In both animals and plants, many developmentally important regulatory genes have complementary microRNAs (miRNAs), which suggests that these miRNAs constitute a class of developmental signalling molecules. Leaves of higher plants exhibit a varying degree of asymmetry along the adaxial/abaxial (upper/lower) axis. This asymmetry is specified through the polarized expression of class III homeodomain/leucine zipper (HD-ZIPIII) genes. In Arabidopsis, three such genes, PHABULOSA (PHB), PHAVOLUTA (PHV) and REVOLUTA (REV), are expressed throughout the incipient leaf, but become adaxially localized after primordium emergence. Downregulation of the HD-ZIPIII genes allows expression of the KANADI and YABBY genes, which specify abaxial fate. PHB, PHV and REV transcripts contain a complementary site for miRNA165 and miRNA166, which can direct their cleavage in vitro. Here we show that miRNA166 constitutes a highly conserved polarizing signal whose expression pattern spatially defines the expression domain of the maize hd-zipIII family member rolled leaf1 (rld1). Moreover, the progressively expanding expression pattern of miRNA166 during leaf development and its accumulation in phloem suggests that miRNA166 may form a movable signal that emanates from a signalling centre below the incipient leaf.
KNOTTED1-like homeobox (KNOX) genes promote stem cell activity and must be repressed to form determinate lateral organs. Stable KNOX gene silencing during organogenesis is known to involve the predicted DNA binding proteins ASYMMETRIC LEAVES1 (AS1) and AS2 as well as the chromatin-remodeling factor HIRA. However, the mechanism of silencing is unknown. Here, we show that AS1 and AS2 form a repressor complex that binds directly to the regulatory motifs CWGTTD and KMKTTGAHW present at two sites in the promoters of the KNOX genes BREVIPEDICELLUS (BP) and KNAT2. The two binding sites act nonredundantly, and interaction between AS1-AS2 complexes at these sites is required to repress BP. Promoter deletion analysis further indicates that enhancer elements required for BP expression in the leaf are located between the AS1-AS2 complex binding sites. We propose that AS1-AS2 complexes interact to create a loop in the KNOX promoter and, likely through recruitment of HIRA, form a repressive chromatin state that blocks enhancer activity during organogenesis. Our model for AS1-AS2-mediated KNOX gene silencing is conceptually similar to the action of an insulator. This regulatory mechanism may be conserved in simple leafed species of monocot and dicot lineages and constitutes a potential key determinant in the evolution of compound leaves.
In higher plants, seed development requires maternal gene activity in the haploid (gametophytic) as well as diploid (sporophytic) tissues of the developing ovule. The Arabidopsis thaliana gene MEDEA (MEA) encodes a SET-domain protein of the Polycomb group that regulates cell proliferation by exerting a gametophytic maternal control during seed development. Seeds derived from female gametocytes (embryo sacs) carrying a mutant mea allele abort and exhibit cell proliferation defects in both the embryo and the endosperm. In this study we show that the mea mutation affects an imprinted gene expressed maternally in cells of the female gametophyte and after fertilization only from maternally inherited MEA alleles. Paternally inherited MEA alleles are transcriptionally silent in both the young embryo and endosperm. Mutations at the decrease in DNA methylation1 (ddm1) locus are able to rescue mea seeds by functionally reactivating paternally inherited MEA alleles during seed development. Rescued seeds are larger than the wild type and exhibit some of the abnormalities found in aborting mea seeds. Our results indicate that the maintenance of the genomic imprint at the mea locus requires zygotic DDM1 activity. Because DDM1 encodes a putative chromatin remodeling factor, chromatin structure is likely to be interrelated with genomic imprinting in Arabidopsis.
Plant shoots are characterized by indeterminate growth resulting from the action of a population of stem cells in the shoot apical meristem (SAM). Indeterminacy within the SAM is specified in part by the class I knox homeobox genes. The myb domain proteins rough sheath2 (RS2) and ASYMMETRIC LEAVES1 (AS1) from maize (Zea mays) and Arabidopsis thaliana, respectively, are required to establish determinacy during leaf development. These proteins are part of a cellular memory system that in response to a stem cell-derived signal keeps knox genes in an off state during organogenesis. Here, we show that RS2/AS1 can form conserved protein complexes through interaction with the DNA binding factor ASYMMETRIC LEAVES2, a predicted RNA binding protein (RIK, for RS2-Interacting KH protein), and a homologue of the chromatinremodeling protein HIRA. Partial loss of HIRA function in Arabidopsis results in developmental defects comparable to those of as1 and causes reactivation of knox genes in developing leaves, demonstrating a direct role for HIRA in knox gene repression and the establishment of determinacy during leaf formation. Our data suggest that RS2/AS1 and HIRA mediate the epigenetic silencing of knox genes, possibly by modulating chromatin structure. Components of this process are conserved in animals, suggesting the possibility that a similar epigenetic mechanism maintains determinacy during both plant and animal development.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.