Plant shoots are characterized by indeterminate growth resulting from the action of a population of stem cells in the shoot apical meristem (SAM). Indeterminacy within the SAM is specified in part by the class I knox homeobox genes. The myb domain proteins rough sheath2 (RS2) and ASYMMETRIC LEAVES1 (AS1) from maize (Zea mays) and Arabidopsis thaliana, respectively, are required to establish determinacy during leaf development. These proteins are part of a cellular memory system that in response to a stem cell-derived signal keeps knox genes in an off state during organogenesis. Here, we show that RS2/AS1 can form conserved protein complexes through interaction with the DNA binding factor ASYMMETRIC LEAVES2, a predicted RNA binding protein (RIK, for RS2-Interacting KH protein), and a homologue of the chromatinremodeling protein HIRA. Partial loss of HIRA function in Arabidopsis results in developmental defects comparable to those of as1 and causes reactivation of knox genes in developing leaves, demonstrating a direct role for HIRA in knox gene repression and the establishment of determinacy during leaf formation. Our data suggest that RS2/AS1 and HIRA mediate the epigenetic silencing of knox genes, possibly by modulating chromatin structure. Components of this process are conserved in animals, suggesting the possibility that a similar epigenetic mechanism maintains determinacy during both plant and animal development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.