Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain’s computational capacities that virtually subtend all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapted across evolution to accomplish increasingly complex functions? By applying a novel approach to measure information transmission in mouse, macaque and human brains, we found an evolutionary gradient from selective information processing, where brain regions share information through single polysynaptic pathways, to parallel information processing, where regions communicate through multiple parallel pathways. In humans, parallel processing acts as a major connector between unimodal and transmodal systems. Communication strategies are unique to individuals across different mammalian species, pointing at the individual-level specificity of information routing architecture. Our work provides compelling evidence that different communication strategies are tied to the evolutionary complexity of mammalian brain networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.