Prolonged wakefulness alters cortical excitability, which is essential for proper brain function and cognition. However, besides prior wakefulness, brain function and cognition are also affected by circadian rhythmicity. Whether the regulation of cognition involves a circadian impact on cortical excitability is unknown. Here, we assessed cortical excitability from scalp electroencephalography (EEG) responses to transcranial magnetic stimulation in 22 participants during 29 h of wakefulness under constant conditions. Data reveal robust circadian dynamics of cortical excitability that are strongest in those individuals with highest endocrine markers of circadian amplitude. In addition, the time course of cortical excitability correlates with changes in EEG synchronization and cognitive performance. These results demonstrate that the crucial factor for cortical excitability, and basic brain function in general, is the balance between circadian rhythmicity and sleep need, rather than sleep homoeostasis alone. These findings have implications for clinical applications such as non-invasive brain stimulation in neurorehabilitation.
Light is a powerful stimulant for human alertness and cognition, presumably acting through a photoreception system that heavily relies on the photopigment melanopsin. In humans, evidence for melanopsin involvement in light-driven cognitive stimulation remains indirect, due to the difficulty to selectively isolate its contribution. Therefore, a role for melanopsin in human cognitive regulation remains to be established. Here, sixteen participants underwent consecutive and identical functional MRI recordings, during which they performed a simple auditory detection task and a more difficult auditory working memory task, while continuously exposed to the same test light (515 nm). We show that the impact of test light on executive brain responses depends on the wavelength of the light to which individuals were exposed prior to each recording. Test-light impact on executive responses in widespread prefrontal areas and in the pulvinar increased when the participants had been exposed to longer (589 nm), but not shorter (461 nm), wavelength light, more than 1 h before. This wavelength-dependent impact of prior light exposure is consistent with recent theories of the light-driven melanopsin dual states. Our results emphasize the critical role of light for cognitive brain responses and are, to date, the strongest evidence in favor of a cognitive role for melanopsin, which may confer a form of "photic memory" to human cognitive brain function.fMRI | non-image-forming
Cortical excitability depends on sleep-wake regulation, is central to cognition and hasbeen implicated in age-related cognitive decline. The dynamics of cortical excitability during prolonged wakefulness in aging are unknown, however. Here, we repeatedly probed cortical excitability of the frontal cortex using transcranial magnetic stimulation and electroencephalography in thirteen young and twelve older healthy participants during sleep deprivation. While overall cortical excitability did not differ between age groups, the magnitude of cortical excitability variations during prolonged wakefulness was dampened in older individuals. This age-related dampening was associated with mitigated neurobehavioural consequences of sleep loss on executive functions. Furthermore, higher cortical excitability was potentially associated with better and lower executive performance, respectively in older and younger adults. The dampening of cortical excitability dynamics found in older participants likely arises from a reduced impact of sleep homeostasis and circadian processes. It may reflect reduced brain adaptability underlying reduced cognitive flexibility in aging. Future research should confirm preliminary associations between cortical excitability and behaviour, and address whether maintaining cortical excitability dynamics can counteract agerelated cognitive decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.