At the sequence level, genetic diversity is provided by de novo transmittable mutations that may act as a substrate for natural selection. The gametogenesis process itself is considered more likely to induce endogenous mutations and a clear male bias has been demonstrated from recent next-generation sequencing analyses. As new experimental evidence accumulates, the post-meiotic events of the male gametogenesis (spermiogenesis) appear as an ideal context to induce de novo genetic polymorphism transmittable to the next generation. It may prove to be a major component of the observed male mutation bias. As spermatids undergo chromatin remodeling, transient endogenous DNA double-stranded breaks are produced and trigger a DNA damage response. In these haploid cells, one would expect that the non-templated, DNA end-joining repair processes may generate a repertoire of sequence alterations in every sperm cell potentially transmittable to the next generation. This may therefore represent a novel physiological mechanism contributing to genetic diversity and evolution.
During the haploid phase of spermatogenesis, spermatids undergo a complex remodeling of the paternal genome involving the finely orchestrated replacement of histones by the highly-basic protamines. The associated striking change in DNA topology is characterized by a transient surge of both single- and double-stranded DNA breaks in the whole population of spermatids which are repaired before spermiation. These transient DNA breaks are now considered part of the normal differentiation program of these cells. Despite an increasing interest in the study of spermiogenesis in the last decade and the potential threat to the haploid genome, the origin of these DNA breaks still remains elusive. This review briefly outlines the current hypotheses regarding possible mechanisms that may lead to such transient DNA fragmentation including torsional stress, enzyme-induced breaks, apoptosis-like processes or oxidative stress. A better understanding of the origin of these DNA breaks will lead to further investigations on the genetic instability and mutagenic potential induced by the chromatin remodeling.
Conditions leading to unrepaired
DNA
double‐stranded breaks are potent inducers of genetic instability. Systemic conditions may lead to fluctuation of hydrogen ions in the cellular microenvironment, and we show that small variations in extracellular
pH
, termed suboptimal
pH
e, can decrease the efficiency of
DNA
repair in the absence of intracellular
pH
variation. Recovery from bleomycin‐induced
DNA
double‐stranded breaks in fibroblasts proceeded less efficiently at suboptimal
pH
e values ranging from 7.2 to 6.9, as shown by the persistence of repair foci, reduction of H4K16 acetylation, and chromosomal instability, while senescence or apoptosis remained undetected. By allowing escape from these protective mechanisms, suboptimal
pH
e may therefore enhance the genotoxicity of double‐stranded breaks, leading to genetic instability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.