Predicting click and conversion probabilities when bidding on ad exchanges is at the core of the programmatic advertising industry. Two separated lines of previous works respectively address i) the prediction of user conversion probability and ii) the attribution of these conversions to advertising events (such as clicks) after the fact. We argue that attribution modeling improves the efficiency of the bidding policy in the context of performance advertising.Firstly we explain the inefficiency of the standard bidding policy with respect to attribution. Secondly we learn and utilize an attribution model in the bidder itself and show how it modifies the average bid after a click. Finally we produce evidence of the effectiveness of the proposed method on both offline and online experiments with data spanning several weeks of real traffic from Criteo, a leader in performance advertising.
Detecting faces in images is a key step in numerous computer vision applications, such as face recognition or facial expression analysis. Automatic face detection is a difficult task because of the large face intra-class variability which is due to the important influence of the environmental conditions on the face appearance. We propose new features based on anisotropic Gaussian filters for detecting frontal faces in complex images. The performances of our face detector based on these new features have been evaluated on reference test sets, and clearly show improvements compared to the state-of-the-art.
Summary. In this paper we present a computer based approach to analysis of social interaction experiments for the diagnosis of autism spectrum disorders in young children of 6-18 months of age. We apply face detection on videos from a head-mounted wireless camera to measure the time a child spends looking at people. In-Plane rotation invariant Face Detection is used to detect faces from the diverse directions of the children's head. Skin color detection is used to render the system more robust to cluttered environments and to the poor quality of the video recording.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.