Sulfur Recirculation is a novel technique for reducing the high temperature corrosion and dioxin formation in Waste-to-Energy plants by recirculating sulfur from the wet flue gas cleaning back to the boiler. This is achieved by separating SO 2 from the flue gas in a wet scrubber downstream of a HCl scrubber. H 2 O 2 dosed into the scrubber reacts with SO 2 in the gas and produces a 15-25 wt% H 2 SO 4 solution, which is injected into the boiler producing SO 2 , thus creating a sulfur loop. The first permanent full-scale installation has been in operation in one of the two commercial full-scale Waste-to Energy boilers at Maabjerg Energy Center (MEC) in Denmark since October 2016. The recirculated sulfur increased the gas concentration of SO 2 by a factor of 2-3 in the boiler, thereby enhancing the sulfation of corrosive alkali chlorides to non-corrosive alkali sulfates. The chlorine content of the superheater deposits decreased by 85%, and the superheater corrosion rate decreased by 40-90% during the first year of operation. The dioxin concentrations upstream of the dioxin removal system decreased by 75% and the dioxin emissions decreased by 72% with Sulfur Recirculation in operation. Furthermore, the sulfate containing effluent water was almost eliminated due to the increased sulfation of the ashes and deposits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.