Neural Architecture Search (NAS) is a logical next step in the automatic learning of representations, but the development of NAS methods is slowed by high computational demands. As a remedy, several tabular NAS benchmarks were proposed to simulate runs of NAS methods in seconds. However, all existing NAS benchmarks are limited to extremely small architectural spaces since they rely on exhaustive evaluations of the space. This leads to unrealistic results, such as a strong performance of local search and random search, that do not transfer to larger search spaces. To overcome this fundamental limitation, we propose NAS-Bench-301, the first model-based surrogate NAS benchmark, using a search space containing 10 18 architectures, orders of magnitude larger than any previous NAS benchmark. We first motivate the benefits of using such a surrogate benchmark compared to a tabular one by smoothing out the noise stemming from the stochasticity of single SGD runs in a tabular benchmark. Then, we analyze our new dataset consisting of architecture evaluations and comprehensively evaluate various regression models as surrogates to demonstrate their capability to model the architecture space, also using deep ensembles to model uncertainty. Finally, we benchmark a wide range of NAS algorithms using NAS-Bench-301 allowing us to obtain comparable results to the true benchmark at a fraction of the cost.
We present an auxiliary task to Mask R-CNN, an instance segmentation network, which leads to faster training of the mask head. Our addition to Mask R-CNN is a new prediction head, the Edge Agreement Head, which is inspired by the way human annotators perform instance segmentation. Human annotators copy the contour of an object instance and only indirectly the occupied instance area. Hence, the edges of instance masks are particularly useful as they characterize the instance well. The Edge Agreement Head therefore encourages predicted masks to have similar image gradients to the ground-truth mask using edge detection filters. We provide a detailed survey of loss combinations and show improvements on the MS COCO Mask metrics compared to using no additional loss. Our approach marginally increases the model size and adds no additional trainable model variables. While the computational costs are increased slightly, the increment is negligible considering the high computational cost of the Mask R-CNN architecture. As the additional network head is only relevant during training, inference speed remains unchanged compared to Mask R-CNN. In a default Mask R-CNN setup, we achieve a training speed-up and a relative overall improvement of 8.1% on the MS COCO metrics compared to the baseline.
Many important resource allocation problems involve the combinatorial assignment of items, e.g., auctions or course allocation. Because the bundle space grows exponentially in the number of items, preference elicitation is a key challenge in these domains. Recently, researchers have proposed ML-based mechanisms that outperform traditional mechanisms while reducing preference elicitation costs for agents. However, one major shortcoming of the ML algorithms that were used is their disregard of important prior knowledge about agents' preferences. To address this, we introduce monotone-value neural networks (MVNNs), which are designed to capture combinatorial valuations, while enforcing monotonicity and normality. On a technical level, we prove that our MVNNs are universal in the class of monotone and normalized value functions, and we provide a mixed-integer linear program (MILP) formulation to make solving MVNN-based winner determination problems (WDPs) practically feasible. We evaluate our MVNNs experimentally in spectrum auction domains. Our results show that MVNNs improve the prediction performance, they yield state-of-the-art allocative efficiency in the auction, and they also reduce the run-time of the WDPs. Our code is available on GitHub: https://github.com/marketdesignresearch/MVNN.
One-shot neural architecture search (NAS) has played a crucial role in making NAS methods computationally feasible in practice. Nevertheless, there is still a lack of understanding on how these weight-sharing algorithms exactly work due to the many factors controlling the dynamics of the process. In order to allow a scientific study of these components, we introduce a general framework for one-shot NAS that can be instantiated to many recently-introduced variants and introduce a general benchmarking framework that draws on the recent large-scale tabular benchmark NAS-Bench-101 for cheap anytime evaluations of one-shot NAS methods. To showcase the framework, we compare several state-of-the-art one-shot NAS methods, examine how sensitive they are to their hyperparameters and how they can be improved by tuning their hyperparameters, and compare their performance to that of blackbox optimizers for NAS-Bench-101.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.