In modelling and understanding the contact and friction behaviour of human skin, the elastic modulus of the skin is an important input parameter. For the development of design rules for the engineering of surfaces in contact with the skin an expression that describes the relation between the elastic modulus of the skin and the size of the contact is essential. Although an exact description of the mechanical behaviour of the skin requires an anisotropic, nonlinear, viscoelastic model, in this study it was found that for contact modelling involving relatively small deformations, the mechanical behaviour seems to be accurately described by a single parameter: the effective elastic modulus. The effective elastic modulus is shown to decrease several orders of magnitude when the length scale increases, which is the consequence of the rather complex anatomy of the skin. At an indentation depth of 10 mm, the effective elastic modulus was shown to decrease from 0.15 to 0.015 MPa when the radius of curvature of the indenter increases from 10 mm to 10 mm. The variation of the elasticity is explained by the variation in the composition and properties of the different skin layers. This study shows that for the contact modelling of human skin, a closed-form expression based on the anatomy of the skin exists, which yields the magnitude of the effective elastic modulus of the skin as a function of the length scale of the contact depending on variables such as age, gender and environmental conditions.
In the sliding contact between the fingerpad and a rough surface when touching a product’s surface, friction plays a role in the perception of roughness, slipperiness and warmth. For product engineers who aim to control and optimize the sensorial properties of a product surface interacting with the skin, it is essential to understand this frictional behaviour. However, the friction of skin is yet poorly understood. The variation that is observed within or between skin friction studies can be assigned to gender, age and orientation of the finger. Analysing data collected from literature shows some consistent trends. The coefficient of friction increases considerably with increasing hydration level of the skin, due to softening of the top layer of the skin. The coefficient of friction of the fingerpad decreases with normal load to a constant value, which can be attributed to effects of normal adhesion and the deformation behaviour of the fingerpad. There is no consistent effect of velocity on the coefficient of friction. Friction decreases with increasing Ra roughness. When the Ra roughness increases further, the contribution of deformation causes an increase in the friction after which it remains constant. Some influence of the finishing method is reported. The type of material has a smaller influence than the surface roughness of the sample or the condition of the skin. Even though the coefficient of friction of the fingerpad shows some consistent trends, examining the friction behaviour at a more detailed level might explain the contribution of friction to tactile perception. The measuring signal contains relevant information and should be analysed thoroughly as opposed to taking the average coefficient of friction of the steady state part of the signal. Future work should involve the study of local friction behaviour at the scale of the surface roughness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.