Patients with moderate-to-severe Crohn's disease who had a response to induction therapy with 400 mg of certolizumab pegol were more likely to have a maintained response and a remission at 26 weeks with continued certolizumab pegol treatment than with a switch to placebo. (ClinicalTrials.gov number, NCT00152425 [ClinicalTrials.gov].).
Background In psoriasis, inflammation and epidermal hyperplasia are thought to be controlled by T cell-derived cytokines. Evidence suggests that the Th17 cell cytokine interleukin-17 (IL-17) may play a role in disease pathogenesis. Objective To understand the impact that neutralization of IL-17 has on the clinical features of psoriasis and to understand the role that IL-17 has in inflammatory pathways underlying psoriasis in human subjects. Methods We examined skin lesions obtained from 40 subjects participating in a phase 1, randomized, double-blind, placebo-controlled trial of an anti-IL-17 monoclonal antibody, ixekizumab (previously LY2439821), in which subjects received subcutaneous 5mg, 15mg, 50mg or 150mg ixekizumab or placebo at weeks 0, 2, and 4. Results There were significant, dose-dependent reductions from baseline in keratinocyte proliferation, hyperplasia, epidermal thickness, infiltration into the dermis and epidermis by T cells and dendritic cells and keratinocyte expression of innate defense peptides at 2 weeks. By week 6, the skin appeared normal. Quantitative reverse transcriptase polymerase chain reaction and microarrays revealed an ablation of the disease-defining mRNA expression profile by 2 weeks after the first dose of study drug. The effect of IL-17 blockade on expression of genes synergistically regulated by IL-17 and Tumor necrosis factor (TNF) was of higher magnitude at 2 weeks than in prior studies with TNF antagonism. Conclusion Our data suggest that IL-17 is a key “driver” cytokine in psoriasis that activates pathogenic inflammation. Neutralizing IL-17 with ixekizumab may be a successful therapeutic strategy.
Two clinical studies were conducted to assess the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of single and multiple doses (intravenous [iv] and subcutaneous [sc]) of blosozumab in postmenopausal women, including prior/current bisphosphonate (BP) users. In these phase 1, randomized, subject-and investigator-blind, placebo-controlled studies, subjects received escalating doses of blosozumab: single iv doses up to 750 mg, single sc doses of 150 mg, multiple iv doses up to 750 mg every 2 weeks (Q2W) for 8 weeks, multiple sc doses up to 270 mg Q2W for 8 weeks, or placebo. Six subjects were randomized to each dose in the single-dose study (12 to placebo) and up to 12 subjects to each arm in the multiple-dose study. Blosozumab was well tolerated with no safety concerns identified after single or multiple administrations up to 750 mg. Dose-dependent responses were observed in sclerostin, N-terminal propeptide of procollagen type 1, bone-specific alkaline phosphatase, osteocalcin, C-terminal fragment of type 1 collagen, and bone mineral density (BMD) after single and multiple (up to 5) administrations of blosozumab. There was up to a 3.41% (p ¼ 0.002) and up to a 7.71% (p < 0.001) change from baseline in lumbar spine BMD at day 85 after single or multiple administrations of blosozumab, respectively. Prior BP use did not appear to have a clear impact on the effects of single doses of blosozumab when considering bone biomarker and BMD responses. Antibodies to blosozumab were detected by a screening assay, but no patterns with regard to dose or route of administration and no clear impact on blosozumab exposure or PD responses were identified. In summary, blosozumab was well tolerated and exhibited anabolic effects on bone. These findings support further investigation of blosozumab as a potential anabolic therapy for osteoporosis.
Aims: Erythropoiesis-stimulating agents used to treat anaemia in patients with chronic kidney disease (CKD) have been associated with cardiovascular adverse events. Hepcidin production, controlled by bone morphogenic protein 6 (BMP6), regulates iron homeostasis via interactions with the iron transporter, ferroportin. High hepcidin levels are thought to contribute to increased iron sequestration and subsequent anaemia in CKD patients. To investigate alternative therapies to erythropoiesis-stimulating agents for CKD patients, monoclonal antibodies, LY3113593 and LY2928057, targeting BMP6 and ferroportin respectively, were tested in CKD patients.Methods: Preclinical in vitro/vivo data and clinical data in healthy subjects and CKD patients were used to illustrate the translation of pharmacological properties of LY3113593 and LY2928057, highlighting the novelty of targeting these nodes within the hepcidin-ferroportin pathway.Results: LY2928057 bound ferroportin and blocked interactions with hepcidin, allowing iron efflux, leading to increased serum iron and transferrin saturation levels and increased hepcidin in monkeys and humans. In CKD patients, LY2928057 led to slower haemoglobin decline and reduction in ferritin (compared to placebo). Serum iron increase was (mean [90% confidence interval]) 1.98 [1.46-2.68] and 1.36 [1.22-1.51] fold-relative to baseline following LY2928057 600 mg and LY311593 150 mg respectively in CKD patients. LY3113593 specifically blocked BMP6 binding to its receptor and produced increases in iron and transferrin saturation and decreases in hepcidin preclinically and clinically. In CKD patients, LY3113593 produced an increase in haemoglobin and reduction in ferritin (compared to placebo). Conclusion: LY3113593 and LY2928057 pharmacological effects (serum iron and ferritin) were translated from preclinical-to-clinical development. Such interventions may lead to new CKD anaemia treatments.
These results identify pharmacologically active doses of the group II mGluR agonist prodrugs LY2140023 and LY2979165 in humans. They also extend the classes of compounds that have been experimentally shown to reverse the ketamine-evoked phMRI signal in humans, further supporting the use of this method as a neuroimaging biomarker for assessing functional effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.