Objectives: Malaria and oxidative stress are major health problems in the world in general. The goal of the study is to investigate the antimalarial and antioxidant activities of the methanol seed extract of Adenanthera pavonina linn (ADP) in Plasmodium berghei infected mice. Methods: Thirty five mice distributed into seven groups of five animals each were used in this study. Plasmodium berghei, was inoculated into Swiss albino mice intraperitoneally with an innoculum size of 1x107 on day zero (D0). The vehicle (1% DMSO), ADP (100, 200, 400, 600 and 800 mg/kg dose) or chloroquine (10 mg/kg) were thereafter administered from D0 – D3. At the end of the antimalarial studies, the blood samples from these animals were collected through cardiac puncture for biochemical assay. The effect of the ADP on the biomakers of oxidative stress was determined in infected mice. In addition in vitro antioxidant activities of ADP were assessed using the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) based assay. Results: The percentage parasitemia decreased significantly in the parasitized treated group with the crude extract (p < 0.001) compared to the parasitized untreated control group. Also the crude extract, at a dose of 800 mg/kg exerted an antimalarial activity (92.11%) higher than that of chloroquine (88.73%). In the in vitro antioxidant studies, the extract had an IC50> 400 μg/ml which was significantly higher than the standard antioxidant drug, ascorbic acid (IC50 = 1.20 μg/ml). In the case of biochemical and in vivo assay, there was no statistical significant difference (p >0.05) in plasma total protein, malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels in all the treated groups compared to the parasite control group but, there was a statistical significant decrease (p < 0.05) in glutathione (GSH) levels at doses of 400 and 800 mg/kg compared to the parasitized untreated control group. Conclusions: Methanol seed extract of Adenanthera pavonina demonstrated a significant antimalarial activity but did not exert any antioxidant effect over the parasitized treated mice. DOI: http://dx.doi.org/10.3126/ajms.v5i4.9107 Asian Journal of Medical Sciences 2014 Vol.5(4); 44-51
Neural stem cells (NSCs) are immature progenitor cells that are found in developing and adult brains that have the potential of dividing actively and renewing themselves, with a complex form of gene expression. The generation of new brain cells in adult individuals was initially considered impossible, however, the landmark discovery of human neural stem cells in the hippocampus has been followed by further discoveries in other discreet regions of the brain. Investigation into the current state in Africa of the research and use of NSCs shows relatively limited activities on the continent. Information on the African application of NSCs for modelling disease mechanisms, drug discovery, and therapeutics is still limited. The International Brain Research Organization (IBRO)-African Regional Committee (ARC), with support from the Company of Biologists, and the Movement Disorder Society, sponsored the first African Basic School on NSC in Ibadan, Nigeria, with the vision of bringing together young neuroscientists and physicians across different fields in neuroscience to learn from leaders who have applied NSCs in stem cell research, the pathophysiology of neurodegenerative diseases, neuroanatomy, and neurotherapeutics. Twenty early-career researchers in academic institutions at junior and senior faculty cadres were selected from South Africa, Uganda and Nigeria. The students and organizer of the school, who wrote this review on the state of NSCs research in Africa, recommended the following: (1) other African countries can take a cue from South Africa and Nigeria in probing the phenomena of adult neurogenesis in unique animal species on the continent; (2) Africa should leverage the expertise and facilities of South African scientists and international collaborators in scaling up NSC research into these unique species and (3) Centers of Excellence should be established on the continent to serve as research hubs for training postgraduate students, and facilities for African scientists who trained overseas on NSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.