Summary
One of the cardinal symptoms of type 1 Gaucher Disease (GD) is cytopenia, usually explained by bone marrow (BM) infiltration by Gaucher cells and hypersplenism. However, some cases of cytopenia in splenectomized or treated patients suggest possible other mechanisms. To evaluate intra‐cellular glucocerebrosidase (GlcC) activity in immature progenitors and to prove the conduritol B epoxide (CBE)‐induced inhibition of the enzyme, we used an adapted flow cytometric technique before assessing the direct effect of GlcC deficiency in functional assays. Among haematopoietic cells from healthy donors, monocytes showed the highest GlcC activity but immature CD34+ and mesenchymal cells also had significant GlcC activity. CBE greatly inhibited the enzyme activity of all cell categories. GlcC‐deficient CD34+ cells showed impaired ability to proliferate and differentiate in the expansion assay and had lower frequency of erythroid burst‐forming units, granulocyte colony‐forming units (CFU) and macrophage CFU progenitors, but the effect of GlcC deficiency on megakaryocyte CFU lineage was not significant. GlcC deficiency strongly impaired primitive haematopoiesis in long‐term culture. Furthermore, GlcC deficiency progressively impaired proliferation of mesenchymal progenitors. These data suggest an intrinsic effect of GlcC deficiency on BM immature cells that supplements the pathophysiology of GD and opens new perspectives of therapeutic approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.