We determined whether kisspeptin could be used to manipulate the gonadotropin axis and ovulation in sheep. First, a series of experiments was performed to determine the gonadotropic responses to different modes and doses of kisspeptin administration during the anestrous season using estradiol-treated ovariectomized ewes. We found that: 1) injections (iv) of doses as low as 6 nmol human C-terminal Kiss1 decapeptide elevate plasma LH and FSH levels, 2) murine C-terminal Kiss1 decapeptide was equipotent to human C-terminal Kiss1 decapeptide in terms of the release of LH or FSH, and 3) constant iv infusion of kisspeptin induced a sustained release of LH and FSH over a number of hours. During the breeding season and in progesterone-synchronized cyclical ewes, constant iv infusion of murine C-terminal Kiss1 decapeptide-10 (0.48 mumol/h over 8 h) was administered 30 h after withdrawal of a progesterone priming period, and surge responses in LH occurred within 2 h. Thus, the treatment synchronized preovulatory LH surges, whereas the surges in vehicle-infused controls were later and more widely dispersed. During the anestrous season, we conducted experiments to determine whether kisspeptin treatment could cause ovulation. Infusion (iv) of 12.4 nmol/h kisspeptin for either 30 or 48 h caused ovulation in more than 80% of kisspeptin-treated animals, whereas less than 20% of control animals ovulated. Our results indicate that systemic delivery of kisspeptin provides new strategies for the manipulation of the gonadotropin secretion and can cause ovulation in noncyclical females.
Thyroid hormone (TH) directs seasonal breeding through reciprocal regulation of TH deiodinase (Dio2/Dio3) gene expression in tanycytes in the ependymal zone of the medio-basal hypothalamus (MBH). Thyrotropin secretion by the pars tuberalis (PT) is a major photoperiod-dependent upstream regulator of Dio2/Dio3 gene expression. Long days enhance thyrotropin production, which increases Dio2 expression and suppresses Dio3 expression, thereby heightening TH signaling in the MBH. Short days appear to exert the converse effect. Here, we combined endocrine profiling and transcriptomics to understand how photoperiod and TH control the ovine reproductive status through effects on hypothalamic function. Almost 3000 genes showed altered hypothalamic expression between the breeding- and non-breeding seasons, showing gene ontology enrichment for cell signaling, epigenetics and neural plasticity. In contrast, acute switching from a short (SP) to a long photoperiod (LP) affected the expression of a much smaller core of 134 LP-responsive genes, including a canonical group previously linked to photoperiodic synchronization. Reproductive switch-off at the end of the winter breeding season was completely blocked by thyroidectomy (THX), despite a very modest effect on the hypothalamic transcriptome. Only 49 genes displayed altered expression between intact and THX ewes, including less than 10% of the LP-induced gene set. Neuroanatomical mapping showed that many LP-induced genes were expressed in the PT, independently of the TH status. In contrast, TH-sensitive seasonal genes were principally expressed in the ependymal zone. These data highlight the distinctions between seasonal remodeling effects, which appear to be largely independent of TH, and TH-dependent localised effects which are permissive for transition to the non-breeding state.
Background/AimsDeoxynivalenol (DON) is a mycotoxin produced by Fusarium species which is commonly found in temperate regions worldwide as a natural contaminant of cereals. It is of great concern not only in terms of economic losses but also in terms of animal and public health. The digestive tract is the first and main target of this food contaminant and it represents a major site of immune tolerance. A finely tuned cross-talk between the innate and the adaptive immune systems ensures the homeostatic equilibrium between the mucosal immune system and commensal microorganisms. The aim of this study was to analyze the impact of DON on the intestinal immune response.MethodologyNon-transformed intestinal porcine epithelial cells IPEC-1 and porcine jejunal explants were used to investigate the effect of DON on the intestinal immune response and the modulation of naive T cells differentiation. Transcriptomic proteomic and flow cytometry analysis were performed.Results DON induced a pro-inflammatory response with a significant increase of expression of mRNA encoding for IL-8, IL-1α and IL-1β, TNF-α in all used models. Additionally, DON significantly induced the expression of genes involved in the differentiation of Th17 cells (STAT3, IL–17A, IL-6, IL-1β) at the expenses of the pathway of regulatory T cells (Treg) (FoxP3, RALDH1). DON also induced genes related to the pathogenic Th17 cells subset such as IL–23A, IL-22 and IL-21 and not genes related to the regulatory Th17 cells (rTh17) such as TGF-β and IL-10.Conclusion DON triggered multiple immune modulatory effects which could be associated with an increased susceptibility to intestinal inflammatory diseases.
Recently, we demonstrated the relationship between anti-Mü llerian hormone (AMH) circulating concentrations, ovarian follicles, and embryo production in cattle. However, they have not yet been established in a species with a seasonal breeding activity. Thus, goats were subjected to repeated in vivo embryo production during the breeding season, at the end of the breeding season, and at the end of the anestrus season. Embryo production after FSH treatment was highly repeatable for each goat. Plasma AMH concentrations, measured before the first FSH treatment, were highly correlated with the number of collected, transferable, and freezable embryos, resulting from the three sessions of embryo production. Plasma AMH concentrations transiently decreased after each exogenous FSH treatment, but they showed little change with season, and no relationship was observed between AMH and endogenous FSH concentrations during seasonal transitions. Follicles of 1-5 mm in diameter were the main target of the FSH treatment and were major contributors to circulating AMH concentrations. Granulosa cell AMH expression decreased as the follicle approached terminal development, while the expression of maturation markers (CYP19A1 and FSHR) increased. In conclusion, circulating AMH concentrations can be predictive of the capacity of a donor goat to produce high or low numbers of high-quality embryos. This prediction could be accurately made from a single blood measurement of AMH during either breeding or anestrus seasons. Variability in the number of gonadotropin-responsive follicles of 1-5 mm in diameter between individuals resulted in the differences in circulating AMH concentrations measured between individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.