Gypsophila bermejoi G. López is an allopolyploid species derived from the parental G. struthium L. subsp. struthium and G. tomentosa L. All these plants are gypsophytes endemic to the Iberian Peninsula of particular ecological, evolutionary and biochemical interest. In this study, we present evidence of a possible repression on the process of G. bermejoi speciation by climatic factors. We modelled the ecological niches of the three taxa considered here using a maximum entropy approach and employing a series of bioclimatic variables. Subsequently, we projected these models onto the geographical space of the Iberian Peninsula in the present age and at two past ages: the Last Glacial Maximum and the mid-Holocene period. Furthermore, we compared these niches using the statistical method devised by Warren to calculate their degree of overlap. We also evaluated the evolution of the bioclimatic habitat suitability at those sites were the soil favors the growth of these species. Both the maximum entropy model and the degree of overlap indicated that the ecological behavior of the hybrid differs notably from that of the parental species. During the Last Glacial Maximum, the two parental species appear to take refuge in the western coastal strip of the Peninsula, a region in which there are virtually no sites where G. bermejoi could potentially be found. However, in the mid-Holocene period the suitability of G. bermejoi to sites with favorable soils shifts from almost null to a strong adaptation, a clear change in this tendency. These results suggest that the ecological niches of hybrid allopolyploids can be considerably different to those of their parental species, which may have evolutionary and ecologically relevant consequences. The data obtained indicate that certain bioclimatic variables may possibly repress the processes by which new species are formed. The difference in the ecological niche of G. bermejoi with respect to its parental species prevented it from prospering during the Last Glacial Maximum. However, the climatic change in the mid-Holocene period released this block and as such, it permitted the new species to establish itself. Accordingly, we favor a recent origin of the current populations of G. bermejoi.
Several species of the Gypsophila genus are endemic to the Iberian Peninsula, including gypsophytes of particular ecological, evolutionary and biochemical interest, and taxa that have undergone both sympatric and allopatric genetic differentiation. The niche shift among these taxa has been assessed using ecological niche modelling and ordination techniques, adopting a niche overlap approach to compare the similarity and equivalency of the ecological niches. We used the Maximum Entropy method to study the potential distribution of these taxa in different eras: the Last Glacial Maximum (LGM), the Mid Holocene and the current conditions. We present evidence of niche shift during the speciation of G. bermejoi, with a strong niche overlap between the parental taxa (G. struthium subsp. struthium and G. tomentosa), yet both overlap much more weakly with the hybrid species. This phenomenon may be explained by genetic and epigenetic interactions, and it has been described in other species. We also studied the sister subspecies G. struthium subsp. struthium and G. struthium subsp. hispanica, with mostly allopatric distributions and with the Iberian System mountain range acting as a geographical barrier. The Iberian System and other mountain ranges may have favored differences in the climatic conditions on either side of the mountain range, which is consistent with an incipient process of bioclimatic ecological speciation. These results seem to indicate that niche shift can occur over very different timespans. In the case of G. bermejoi, speciation may have produced significant niche shifting in one or two generations due to its alloploid nature. By contrast, G. struthium subsp. struthium and G. struthium subsp. hispanica seem to have undergone a more gradual process of allopatric genetic differentiation driven by bioclimatic factors. Both these processes are relatively recent and they will have been strongly influenced by the climate change at the end of LGM.
Climate change has altered the global distribution of many species. Accordingly, we have assessed here the potential shift in the distribution of Gypsophila bermejoi G. López under distinct scenarios of future climate change, this being a species endemic to the Iberian Peninsula. For strict gypsophiles, climatic changes affecting their potential area of distribution could be critical if the new range is not overlapped with suitable soils. Thus, the narrow bioclimatic niche and the endemic nature of this plant could make this species particularly vulnerable to climate change. We used the Maximum Entropy (MaxEnt) method to study the potential distribution of this taxon under four different scenarios of climate change, pin-pointing relevant changes in the potential distribution of this plant and enabling possible future areas of refuge to be assessed. Such scenarios are defined according to four Representative Concentration Pathways (RCPs) [, which represent different trends in the concentration of atmospheric carbon dioxide. As a result, we predict notable changes in the potential distribution of G . bermejoi , and the overlap between soil and bioclimatic suitability would be affected. We also used a Principal Component Analysis (PCA) to model the bioclimatic niche of this species, comparing it with that of its parental taxa. The evolution of bioclimatic suitability was assessed at the current locations of G . bermejoi and as this plant is a strict gypsophile, we generated suitability maps for sites with gypsum soils. Ultimately, this study identifies relevant changes in the potential distribution of G . bermejoi under specific climatic scenarios, observing remarkable differences in the outcomes of the different climate change scenarios. Interestingly, in some scenarios the bioclimatic suitability of G . bermejoi will be enhanced at many locations and even in the worst scenario some possible refuge areas were identified. G . bermejoi behaves more like a hardy survivor than as early victim.
Polyploidy has been an influential force in plant evolution, playing a crucial role in diversification. Differences in polyploid and diploid distributions have been long noted, with polyploid taxa especially abundant in harsh environments. These plants have higher photosynthetic rates and/or higher tolerance to water deficits. Moreover, there is data pointing to an increase in the rate of unreduced gamete formation by plants under conditions of stress. Accordingly, a higher frequency of polyploid individuals would be expected in populations living under extreme environments, a phenomenon that may be relevant when considering the origin of allopolyploid species. Hybridization between distinct autopolyploids is known to produce allopolyploids and hence, a high frequency of compatible autopolyploids in an area could enhance the formation of stable populations of the corresponding allopolyploid hybrid. Here we consider the allopolyploid species Gypsophila bermejoi G. Ló pez and its parental taxa G. struthium L. subsp. struthium and G. tomentosa L. We have used Species Distribution Models to locate areas with low bioclimatic suitability for both parental taxa during the Last Glacial Maximum (LGM), hypothesizing that the rate of tetraploid hybrid formation would be higher than expected where low suitability areas of both parental species overlap. We selected those areas taking into account the strict gypsophyllic nature of these taxa. There is data pointing to a post-glacial origin of the current G. bermejoi populations and according to our hypothesis, such locations could be centers for hybrid tetraploid formation or potential cradles of this species. Indeed, potential Mid-Holocene cradles were also identified in this manner. The evolution of bioclimatic suitability in both LGM and Mid-Holocene cradles was studied to assess the possible survival of the hybrids, and the current distribution of G. bermejoi proved to be consistent with our hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.