The purpose of this work was to verify in vitro adherence of E. corrodens and S. oralis to the surface of tongue piercings made of surgical steel, titanium, Bioplast, and Teflon. For this, 160 piercings were used for the count of Colony Forming Units (CFU) and 32 piercings for analysis under scanning electron microscopy. Of these, 96 (24 of each type) were individually incubated in 5 mL of BHI broth and 50 μL of inoculum at 37°C/24 h. The other 96 piercings formed the control group and were individually incubated in 5 mL of BHI broth at 37°C/24 h. Plates were incubated at 37°C/48 h for counting of CFU/mL and data were submitted to statistical analysis (p value <0.05). For E. corrodens, difference among types of material was observed (p < 0.001) and titanium and surgical steel showed lower bacterial adherence. The adherence of S. oralis differed among piercings, showing lower colonization (p < 0.007) in titanium and surgical steel piercings. The four types of piercings were susceptible to colonization by E. corrodens and S. oralis, and bacterial adhesion was more significant in those made of Bioplast and Teflon. The piercings presented bacterial colonies on their surface, being higher in plastic piercings probably due to their uneven and rough surface.
The inhibitory activity of a Bauhinia forficata tincture (TBF) was investigated against oral microorganism's strains and against a mature oral biofilm. The viability of planktonic cells was analyzed by Minimal Inhibitory and Microbicidal concentrations of TBF. Salivary samples from health volunteers were collected and mixed to form a saliva pool. An aliquot from this pool were seeded on membranes, which were incubated to form biofilm (48 h). The biofilm was treated according to the groups: G1-Chlorhexidine 0.12%; G2-TBF at the highest MMC; G3-Ethanol at the TBF highest MMC. G4 was the growth control. Streptococcus spp. (S) and total microorganisms (TM) from biofilm were counted. TBF was microbicidal against all oral pathogens. G2 was able to reduce the counts of S and TM from biofilm compared to G3 and G4, but less than G1 (p < 0.05). TBF is able to reduce the microbial levels from a mature oral biofilm.
Objective: To evaluate in vitro the effect of a red propolis ethanolic extract (RPE) in the prevention of growth of a cariogenic biofilm and its cytotoxic potential. Material and Methods: Minimum inhibitory and bactericidal concentrations (MIC and MBC) of RPE against Streptococcus mutans and Lactobacillus casei were determined. The cytotoxic potential of 0.4% RPE in oral fibroblasts was observed after 1, 3 and 5 min of contact. Cellulose membrane disks (13 mm, N=12) were used for biofilm formation (24 h) of S. mutans and L. casei, which were treated (1 min) with 0.4% RPE or 0.12% Chlorhexidine (CHX). The control group of biofilm formation was not submitted to any treatment. Serial dilutions were then made to evaluate microbial viability. Descriptive data analysis and, for microbial viability, Mann Whitney test were performed (p≤0.05). Results: RPE showed similar MIC and MBC (4.46 mg/mL) against S. mutans and, for L. casei, they were 8.92 mg/mL (MIC) and 17.85 mg/mL (MBC). CHX presented MIC and MBC <0.00002 mg/mL for S. mutans and 0.00047 mg/mL for L. casei. After 1, 3 and 5 min, the RPE exhibited, respectively, 69.38%, 43.91% and 40.36% of viable cells. The RPE (6.55) and CHX (6.87) presented similar efficacy to reduce the total number of viable bacteria (p>0.05). Regarding the total number of viable bacteria (Log10 CFU/mL), the RPE (6.55) and CHX (6.87) presented similar efficacy (p>0.05). Conclusion: Red propolis extract showed antibacterial activity against the tested strains, exhibited acceptable cytotoxicity and reduced the colonization of S. mutans and L. casei in a biofilm membrane model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.