Usage of Unmanned Aerial Vehicles (UAVs) for different tasks is widespread, as UAVs are affordable, easy to manoeuvre and versatile enough to execute missions in a reliable manner. However, there are still fields where UAVs play a minimal role regardless of their possibilities. One of these application domains is mobile network testing and measurement. Currently, the procedures used to measure the main parameters of mobile networks in an area (such as power output or its distribution in a three-dimensional space) rely on a team of specialized people performing measurements with an array of tools. This procedure is significantly expensive, time consuming and the resulting outputs leave a higher degree of precision to be desired. An open-source UAV-based Cyber-Physical System is put forward that, by means of the Galileo satellite network, a Mobile Data Acquisition System and a Graphical User Interface, can quickly retrieve reliable data from mobile network signals in a three-dimensional space with high accuracy for its visualization and analysis. The UAV tested flew at 40.43 latitude and −3.65 longitude degrees as coordinates, with an altitude over sea level of around 600–800 m through more than 40 mobile network cells and signal power displayed between −75 and −113 decibels.
Livestock monitoring often requires human supervision to guide farm animals to a specific point and the displacement of workers to the places where these animals are, which is likely to be several kilometers away, thus resulting in a repetitive task that requires a significant amount of time and demands the usage of land vehicles capable of moving swiftly through the countryside. In addition to that, data collection about animal behaviour with such procedures is often insufficient and cannot be shared in a secure enough manner. This paper describes how Using Unmanned Aerial Vehicles (UAVs) tailored for this kind of task, when combined with other protocols and software technologies, can provide a useful to mitigate these issues. To prove this end, a functional prototype has been designed, built and tested, offering the operator accurate monitoring of farm facilities and animals. Additionally, security has been conceived as a cornerstone of the presented system from the very beginning. Not only the communication protocols used for this purpose have built-in security layers, but also InterPlanetary File System (IPFS) and blockchain have been used as the technologies that enhance data storage among peers in a network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.