Yucca valida is an important potential source of steroidal saponins closely related to Yucca schidigera, the species that is commercially exploited from the wild as a source of steroidal extracts. Neither of the species has been domesticated mainly because of their slow growth and long life span before harvesting. Here, we report a micropropagation method to generate isogenic or clonal lines for plantation purposes. Seventeen clonal lines were propagated and evaluated over a period of 26 months in an experimental plantation and compared with the performance of plants from seeds. The large variability found between the plants derived from seeds is manifested in the differences observed between the different clonal lines; however, these present a much smaller internal coefficient of variation than the one observed in the population of plants derived from seeds. Some clonal lines perform in a superior manner indicating that a process of selection and cloning can generate lines of fast growing individuals for plantations that can satisfy the demand for these materials without putting a natural resource at risk.
Chile peppers are among the most common and important crops in the State of Baja California Sur, Mexico, where diverse varieties of this crop are annually cultivated. The “chile ancho” (Capsicum annuum L. var. ancho poblano) is one of the most popular hot peppers that is exported fresh to the United States. During a survey in December of 2007 in an experimental field of the CIBNOR in El Carrizal, one of the principal farm districts in the state, a high incidence of yellowing, stunted growth with shortened internodes, foliage discoloration, malformation and crinkle, abortion of flowers, and reduction in size and quantity of fruit were noted in chile ancho. Symptoms and the presence of large populations of whiteflies in the field suggested a possible viral etiology of disease. The symptoms of disease were successfully transmitted by grafting from field plants to tomato and pepper test plants. Samples from both field and test plants were analyzed by scanning electron microscopy (SEM) and molecular techniques. SEM study revealed groups of geminate particles characteristic of begomoviruses (Geminiviridae) in phloem tissue of randomly selected symptomatic plants (four field and two test plants). Total DNA from 12 symptomatic plants (eight naturally infected and four test plants) was obtained by a modified Dellaporta method and analyzed by PCR using the begomovirus universal primers prRepDGR (2) and prC889 (3). Amplicons of ~1.4 kb were obtained from all plant samples and PCR products from four of them were cloned into pGEM-T Easy vector (Promega, Madison, WI) and subsequently analyzed by restriction fragment length polymorphism (RFLP) using EcoRI and HinfI. Two distinct restriction fragment patterns were observed among the cloned PCR products, indicating the occurrence of at least two viruses in the infected plant tissues. The four examined samples contained the same two begomoviruses according to the RFLP analysis data. The complete sequence of the genomic component A of those viruses was determined by PCR amplification of viral DNA with universal, degenerate primers previously described (2), the subsequent cloning of overlapped PCR products, and sequencing. The full-length DNA-A sequence was assembled and compared with viral sequences available at the GenBank database using BlastN and the ClustalV alignment method (MegAlign; DNASTAR, Madison, WI). The 2,781-bp complete genome sequence of one co-infecting monopartite begomovirus (Accession No. HM459851) displayed the highest identity (99%) with Tomato yellow leaf curl virus (TYLCV), isolate Guasave, Sinaloa (Accession No. FJ609655). The 2,609-bp DNA-A sequence of the second begomovirus exhibited the highest nucleotide identity (96%) with Tomato chino La Paz virus (ToChLPV)-[Baja California Sur] (Accession No. AY339619). The presence of TYLCV in this region of Mexico had not been previously reported nor was ToChLPV detected in pepper until now. To our knowledge, this is the first report of a mixed infection of pepper plants with TYLCV and a bipartite begomovirus in Baja California Peninsula. Since the high frequency of recombination events observed in begomovirus mixed infections involving TYLCV (1), it would be important to monitor the possible emergence of ToChLPV-TYLCV recombinants with higher potential virulence. References: (1) S. García-Andrés et al. Virology 365:210, 2007. (2) A. Mauricio-Castillo et al. Plant Dis. 91:1513, 2007. (3) S. D. Wyatt and J. K. Brown. Phytopathology 86:1288, 1996.
Introduction Group B Streptococcus (GBS) causes infections in women during pregnancy and puerperium and invasive infections in newborns. The genes lmb, cylE, scpB, and hvgA are involved with increased virulence of GBS, and hypervirulent clones have been identified in different regions. In addition, increasing resistance of GBS to macrolides and lincosamides has been reported, so knowing the patterns of antibiotic resistance may be necessary to prevent and treat GBS infections. This study aimed to identify virulence genes and antibiotic resistance associated with GBS colonization in pregnant women from northeastern Mexico. Methods Pregnant women with 35–37 weeks of gestation underwent recto-vaginal swabbing. One swab was inoculated into Todd-Hewitt broth supplemented with gentamicin and nalidixic acid, a second swab was inoculated into LIM enrichment broth, and a third swab was submerged into a transport medium. All samples were subcultured onto blood agar. After overnight incubation, suggestive colonies with or without hemolysis were analyzed to confirm GBS identification by Gram staining, catalase test, hippurate hydrolysis, CAMP test, and incubation in a chromogenic medium. We used latex agglutination to confirm and serotype GBS isolates. Antibiotic resistance patterns were assessed by Vitek 2 and disk diffusion. Periumbilical, rectal and nasopharyngeal swabs were collected from some newborns of colonized mothers. All colonized women and their newborns were followed up for three months to assess the development of disease attributable to GBS. Draft genomes of all GBS isolates were obtained by whole-genome sequencing. In addition, bioinformatic analysis to identify genes encoding capsular polysaccharides and virulence factors was performed using BRIG, while antibiotic resistance genes were identified using the CARD database. Results We found 17 GBS colonized women out of 1154 pregnant women (1.47%). None of the six newborns sampled were colonized, and no complications due to GBS were detected in pregnant women or newborns. Three isolates were serotype I, 5 serotype II, 3 serotype III, 4 serotype IV, and 2 serotype V. Ten distinct virulence gene profiles were identified, being scpB, lmb, fbsA, acp, PI-1, PI-2a, cylE the most common (3/14, 21%). The virulence genes identified were scpB, lmb, cylE, PI-1, fbsA, PI-2a, acp, fbsB, PI-2b, and hvgA. We identified resistance to tetracycline in 65% (11/17) of the isolates, intermediate susceptibility to clindamycin in 41% (7/17), and reduced susceptibility to ampicillin in 23.5% (4/17). The tetM gene associated to tetracyclines resistance was found in 79% (11/14) and the mel and mefA genes associated to macrolides resistance in 7% (1/14). Conclusions The low prevalence of colonization and the non-occurrence of mother-to-child transmission suggest that the intentional search for GBS colonization in this population is not justified. Our results also suggest that risk factors should guide the use of intrapartum antibiotic prophylaxis. The detection of strains with genes coding virulence factors means that clones with pathogenic potential circulates in this region. On the other hand, the identification of decreased susceptibility to antibiotics from different antimicrobial categories shows the importance of adequately knowing the resistance patterns to prevent and to treat GBS perinatal infection.
Yucca valida is a close relative to Yucca schidigera and a potential alternative source of the steroidal saponins extracted from the tissues of the latter. The exploitation from the wild is not only inefficient but endangers the natural populations and an alternative to these would be their domestication and establishment of commercial plantations. Both species have a long life span cycle and low growth rates affected by environmental conditions that make it difficult to select fast growing, high yield elite individuals for cloning purposes. Here, we report the in vitro establishment and propagation of mature Y. valida plants derived from seed that showed very different growth rates in an experimental field and their propagative and growth characteristics in vitro. No correlation was found between the growth of field cultivated plants and the relative increase of fresh (FW) or dry weight (DW) of in vitro cultured plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.