<p><strong>Abstract: </strong>Leachate is one of the products that produced by a landfill. Leachate is extremely potential to pollute the environment, such as soil, groundwater and surface water. Air Dingin and Jatibarang landfill have a treatment to treat the leachate produced by the landfill before it is discharged to the environment because it has to be in accordance with Regulation of Ministry of Environment and Forestry of Republic of Indonesia Number P.59/Menlhk/Setjen/Kum.1/7/2016 concern Leachate Standard Quality for Businesses and/or Activities of Landfill. The leachate management in Air Dingin Landfill is controlled landfill, while in Jatibarang landfill, the the leachate management is coagulation-flocculation system. COD and BOD contained in Air Dingin Landfill leachate is lower than Jatibarang Landfill. In order to make leachate more environmental friendly, some innovative methods for leachate management have been developed, such as biofilter, wetlands, coagulation-fluctuation, and electrocoagulation.</p>
<strong><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA;" lang="EN-US">Abstract. </span></strong><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA; mso-bidi-font-weight: bold;" lang="EN-US">COD level indicates the organic matter pollution in water. A predictive analysis, such as Multiple Linear Regression, could be an option to make the COD measurement more effective. <strong>Objectives:</strong></span><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA; mso-bidi-font-weight: bold;" lang="EN-US">This research aims to determine the parameter that can predict COD concentration using correlation analysis and develop a Multiple Linear Regression Model for predictive analysis on COD level in the West Tarum Canal surface water. <strong>Method and results:</strong> The correlation analysis is done in Microsoft Excel using the Pearson Product Moment Correlation Analysis. The water quality dataset is inputted to the R Studio and made the MLR model. The model is validated using t-Test. The result showed that all models in all intake points are not showing good prediction results, and the predictors showed no effect on the COD level. <strong>Conclusion:</strong> The Multiple Linear Regression is not a fit tool for predicting the COD in the West Tarum Canal surface water. </span><a style="mso-comment-reference: rh_1; mso-comment-date: 20201202T0302; mso-comment-done: yes;"><strong style="mso-bidi-font-weight: normal;"><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA;" lang="EN-US">Abstract</span></strong></a><span class="MsoCommentReference"><span style="font-size: 8.0pt; font-family: 'New York',serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'New York'; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA;" lang="EN-US"><!--[if !supportAnnotations]--><a id="_anchor_1" class="msocomanchor" name="_msoanchor_1" href="file:///J:/THESIS/THESIS%20DOCUMENTS/JOURNAL%20SEMINAR/SUBMIT%20JENV/Julio%20Putra%20David_Development%20of%20Multiple%20Linear%20Regression%20Model%20to%20Predict%20COD%20Concentration%20based%20on%20West%20Tarum%20Canal%20Surface%20Water%20Quality%20Data.docx#_msocom_1"></a>[rh1]<!--[endif]--><span style="mso-special-character: comment;"> </span></span></span><strong style="mso-bidi-font-weight: normal;"><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA;" lang="EN-US">. </span></strong><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA; mso-bidi-font-weight: bold;" lang="EN-US">COD level indicates the organic matter pollution in water. A predictive analysis, such as Multiple Linear Regression, could be an option to make the COD measurement more effective. <span style="mso-spacerun: yes;"> </span><a style="mso-comment-reference: rh_2; mso-comment-date: 20201202T0249; mso-comment-done: yes;"><strong>Objectives</strong></a></span><span class="MsoCommentReference"><span style="font-size: 8.0pt; font-family: 'New York',serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'New York'; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA;" lang="EN-US"><!--[if !supportAnnotations]--><a id="_anchor_2" class="msocomanchor" name="_msoanchor_2" href="file:///J:/THESIS/THESIS%20DOCUMENTS/JOURNAL%20SEMINAR/SUBMIT%20JENV/Julio%20Putra%20David_Development%20of%20Multiple%20Linear%20Regression%20Model%20to%20Predict%20COD%20Concentration%20based%20on%20West%20Tarum%20Canal%20Surface%20Water%20Quality%20Data.docx#_msocom_2"></a>[rh2]<!--[endif]--><span style="mso-special-character: comment;"> </span></span></span><strong><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA;" lang="EN-US">:</span></strong><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA; mso-bidi-font-weight: bold;" lang="EN-US">This research aims to determine the parameter that can predict COD concentration using correlation analysis and develop a Multiple Linear Regression Model for predictive analysis on COD level in the West Tarum Canal surface water. <a style="mso-comment-reference: rh_3; mso-comment-date: 20201202T0301; mso-comment-done: yes;"><strong>Method and results</strong></a></span><span class="MsoCommentReference"><span style="font-size: 8.0pt; font-family: 'New York',serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'New York'; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA;" lang="EN-US"><!--[if !supportAnnotations]--><a id="_anchor_3" class="msocomanchor" name="_msoanchor_3" href="file:///J:/THESIS/THESIS%20DOCUMENTS/JOURNAL%20SEMINAR/SUBMIT%20JENV/Julio%20Putra%20David_Development%20of%20Multiple%20Linear%20Regression%20Model%20to%20Predict%20COD%20Concentration%20based%20on%20West%20Tarum%20Canal%20Surface%20Water%20Quality%20Data.docx#_msocom_3"></a>[rh3]<!--[endif]--><span style="mso-special-character: comment;"> </span></span></span><strong><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA;" lang="EN-US">:</span></strong><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA; mso-bidi-font-weight: bold;" lang="EN-US"> The correlation analysis is done in Microsoft Excel using the Pearson Product Moment Correlation Analysis. The water quality dataset is inputted to the R Studio and made the MLR model. The model is validated using t-Test. The result showed that all models in all intake points are not showing good prediction results, and the predictors showed no effect on the COD level. <a style="mso-comment-reference: rh_4; mso-comment-date: 20201202T0301; mso-comment-done: yes;"><strong>Conclusion</strong></a></span><span class="MsoCommentReference"><span style="font-size: 8.0pt; font-family: 'New York',serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: 'New York'; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA;" lang="EN-US"><!--[if !supportAnnotations]--><a id="_anchor_4" class="msocomanchor" name="_msoanchor_4" href="file:///J:/THESIS/THESIS%20DOCUMENTS/JOURNAL%20SEMINAR/SUBMIT%20JENV/Julio%20Putra%20David_Development%20of%20Multiple%20Linear%20Regression%20Model%20to%20Predict%20COD%20Concentration%20based%20on%20West%20Tarum%20Canal%20Surface%20Water%20Quality%20Data.docx#_msocom_4"></a>[rh4]<!--[endif]--><span style="mso-special-character: comment;"> </span></span></span><strong><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA;" lang="EN-US">:</span></strong><span style="font-size: 10.0pt; font-family: 'Calibri Light',sans-serif; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-family: Arial; mso-ansi-language: EN-US; mso-fareast-language: AR-SA; mso-bidi-language: AR-SA; mso-bidi-font-weight: bold;" lang="EN-US"> The Multiple Linear Regression is not a fit tool for predicting the COD in the West Tarum Canal surface water. </span><div style="mso-element: comment-list;"><!--[if !supportAnnotations]--><hr class="msocomoff" align="left" size="1" width="33%" /><!--[endif]--><div style="mso-element: comment;"><!--[if !supportAnnotations]--><div id="_com_1" class="msocomtxt"><!--[endif]--><span style="mso-comment-author: rhakiki;"><!--[if !supportAnnotations]--></span><p class="MsoCommentText"> </p></div></div><div style="mso-element: comment;"><div id="_com_4" class="msocomtxt"><!--[if !supportAnnotations]--></div><!--[endif]--></div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.