In order to interact with a robot or make wise decisions about where and how to deploy it in the real world, humans need to have an accurate mental model of how the robot acts in different situations. We propose to improve users' mental model of a robot by showing them examples of how the robot behaves in informative scenarios. We explore this in two settings. First, we show that when there are many possible environment states, users can more quickly understand the robot's policy if they are shown critical states where taking a particular action is important. Second, we show that when there is a distribution shift between training and test environment distributions, then it is more effective to show exploratory states that the robot does not visit naturally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.