ObjectiveDepression is a prevalent disorder difficult to diagnose and treat. In particular, depressed patients exhibit largely unpredictable responses to treatment. Toward the goal of personalizing treatment for depression, we develop and evaluate computational models that use electronic health record (EHR) data for predicting the diagnosis and severity of depression, and response to treatment.Materials and methodsWe develop regression-based models for predicting depression, its severity, and response to treatment from EHR data, using structured diagnosis and medication codes as well as free-text clinical reports. We used two datasets: 35 000 patients (5000 depressed) from the Palo Alto Medical Foundation and 5651 patients treated for depression from the Group Health Research Institute.ResultsOur models are able to predict a future diagnosis of depression up to 12 months in advance (area under the receiver operating characteristic curve (AUC) 0.70–0.80). We can differentiate patients with severe baseline depression from those with minimal or mild baseline depression (AUC 0.72). Baseline depression severity was the strongest predictor of treatment response for medication and psychotherapy.ConclusionsIt is possible to use EHR data to predict a diagnosis of depression up to 12 months in advance and to differentiate between extreme baseline levels of depression. The models use commonly available data on diagnosis, medication, and clinical progress notes, making them easily portable. The ability to automatically determine severity can facilitate assembly of large patient cohorts with similar severity from multiple sites, which may enable elucidation of the moderators of treatment response in the future.
Our goal is to enable robots to express their incapability, and to do so in a way that communicates both what they are trying to accomplish and why they are unable to accomplish it. We frame this as a trajectory optimization problem: maximize the similarity between the motion expressing incapability and what would amount to successful task execution, while obeying the physical limits of the robot. We introduce and evaluate candidate similarity measures, and show that one in particular generalizes to a range of tasks, while producing expressive motions that are tailored to each task. Our user study supports that our approach automatically generates motions expressing incapability that communicate both what and why to end-users, and improve their overall perception of the robot and willingness to collaborate with it in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.