BackgroundApproaches in malaria risk mapping continue to advance in scope with the advent of geostatistical techniques spanning both the spatial and temporal domains. A substantive review of the merits of the methods and covariates used to map malaria risk has not been undertaken. Therefore, this review aimed to systematically retrieve, summarise methods and examine covariates that have been used for mapping malaria risk in sub-Saharan Africa (SSA).MethodsA systematic search of malaria risk mapping studies was conducted using PubMed, EBSCOhost, Web of Science and Scopus databases. The search was restricted to refereed studies published in English from January 1968 to April 2020. To ensure completeness, a manual search through the reference lists of selected studies was also undertaken. Two independent reviewers completed each of the review phases namely: identification of relevant studies based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, data extraction and methodological quality assessment using a validated scoring criterion.ResultsOne hundred and seven studies met the inclusion criteria. The median quality score across studies was 12/16 (range: 7–16). Approximately half (44%) of the studies employed variable selection techniques prior to mapping with rainfall and temperature selected in over 50% of the studies. Malaria incidence (47%) and prevalence (35%) were the most commonly mapped outcomes, with Bayesian geostatistical models often (31%) the preferred approach to risk mapping. Additionally, 29% of the studies employed various spatial clustering methods to explore the geographical variation of malaria patterns, with Kulldorf scan statistic being the most common. Model validation was specified in 53 (50%) studies, with partitioning data into training and validation sets being the common approach.ConclusionsOur review highlights the methodological diversity prominent in malaria risk mapping across SSA. To ensure reproducibility and quality science, best practices and transparent approaches should be adopted when selecting the statistical framework and covariates for malaria risk mapping. Findings underscore the need to periodically assess methods and covariates used in malaria risk mapping; to accommodate changes in data availability, data quality and innovation in statistical methodology.
BackgroundOver the last 30 years, South Africa has experienced four ‘colliding epidemics’ of HIV and tuberculosis, chronic illness and mental health, injury and violence, and maternal, neonatal, and child mortality, which have had substantial effects on health and well-being. Using data from the 2019 Global Burden of Diseases, Injuries and Risk Factors Study (GBD 2019), we evaluated national and provincial health trends and progress towards important Sustainable Development Goal targets from 1990 to 2019.MethodsWe analysed GBD 2019 estimates of mortality, non-fatal health loss, summary health measures and risk factor burden, comparing trends over 1990–2007 and 2007–2019. Additionally, we decomposed changes in life expectancy by cause of death and assessed healthcare system performance.ResultsAcross the nine provinces, inequalities in mortality and life expectancy increased over 1990–2007, largely due to differences in HIV/AIDS, then decreased over 2007–2019. Demographic change and increases in non-communicable diseases nearly doubled the number of years lived with disability between 1990 and 2019. From 1990 to 2019, risk factor burdens generally shifted from communicable and nutritional disease risks to non-communicable disease and injury risks; unsafe sex remained the top risk factor. Despite widespread improvements in healthcare system performance, the greatest gains were generally in economically advantaged provinces.ConclusionsReductions in HIV/AIDS and related conditions have led to improved health since 2007, though most provinces still lag in key areas. To achieve health targets, provincial governments should enhance health investments and exchange of knowledge, resources and best practices alongside populations that have been left behind, especially following the COVID-19 pandemic.
Background Adverse pregnancy outcomes jointly account for a high proportion of mortality and morbidity among pregnant women and their infants. Furthermore, the burden attributed to adverse pregnancy outcomes remains high and inadequately characterised due to the intricate interplay of its etiology and shared set of important risk factors. This study sought to quantify and map the underlying risk of multiple adverse pregnancy outcomes in Kenya at sub-county level using a shared component space-time modelling framework. Methods Reported sub-county level adverse pregnancy outcomes count from January 2016 – December 2019 were obtained from the Kenyan District Health Information System. A Bayesian hierarchical spatio-temporal model was used to estimate the joint burden of adverse pregnancy outcomes in space (sub-county) and time (year). To improve the precision of our estimates over time and space, information across the outcomes were combined via the shared and the outcome-specific components using a shared component model with spatio-temporal interactions. Results Overall, the total number of adverse outcomes in pregnancy increased by 14.2% (95% UI: 14.0–14.5) from 88,816 cases in 2016 to 101,455 cases in 2019. Between 2016 and 2019, the estimated low birth weight rate and the pre-term birth rate were 4.5 (95% UI: 4.4–4.7) and 2.3 (95% UI: 2.2–2.5) per 100 live births. The stillbirth and neonatal death rates were estimated to be 18.7 (95% UI: 18.0–19.4) and 6.9 (95% UI: 6.4–7.4) per 1000 live births. The magnitude of the spatio-temporal variation attributed to shared risk was high for pre-term births, low birth weight, neonatal deaths, stillbirths and neonatal deaths, respectively. The shared risk patterns were dominant in sub-counties located along the Indian ocean coastline, central and western Kenya. Conclusions This study demonstrates the usefulness of a Bayesian joint spatio-temporal shared component model in exploiting specific and shared risk of adverse pregnancy outcomes sub-nationally. By identifying sub-counties with elevated risks and data gaps, our estimates not only assert the need for bolstering maternal health programs in the identified high-risk sub-counties but also provides a baseline against which to assess the progress towards the attainment of Sustainable Development Goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.