Bound states in the continuum (BICs) are ubiquitous physical phenomena where such states occur due to strong coupling between leaky modes in side lossy systems. BICs in meta-optics and nanophotonics enable optical mode confinement to strengthen local field enhancement in nonlinear optics. In this study, we numerically investigate second-harmonic generation (SHG) in the vicinity of BICs with a photonic structure comprising one-dimensional nanogratings and a slab waveguide made of lithium niobate (LiNbO3, LN). By breaking the symmetry of LN nanogratings, BICs transition to quasi-BICs, which enable strong local field confinement inside LN slab waveguide to be supported, thereby resulting in improving SHG conversion with lower pump power of fundamental frequency (FW). With a peak intensity of 1.33 GW cm−2 at the FW, our structure features a second-harmonic conversion efficiency up to 8.13 × 10−5 at quasi-BICs. We believe that our results will facilitate the application of LN in integrated nonlinear nanophotonic.
We propose an electro-optic on-chip beam shifting device based on gradient microstructured electrodes and an optical tapered waveguide fabricated using lithium niobate (LN). The distribution of refractive index variations of the optical waveguide can be electro-optically defined and tailored by the designed gradient microstructured electrodes, which directs the beam propagation and shifting. The length of the beam shifting device is 18 mm and the width of the waveguide is gradually increased from 8 μm to 80 μm. The functionality of the beam shifting device is experimentally demonstrated, and it is observed that it has an electro-optic tunability of 0.41 μm/V, and a high-speed response time of 19 ns (λ=1310 nm). This study can provide potential applications in optical switching and modulation, beam scanning and ranging, optical spatial communications, etc.
Reconfigurable photonic devices are important constituents for future optical integrated circuits, where electro-optic manipulation of the light field in a lithium niobate (LN) waveguide is one of the promising solutions. Herein, we demonstrate a paradigm shift of the beam steering mechanism where reconfigurable beam steering is enabled by the wavefront shaping technology. Furthermore, this strategy is fully compatible with the electro-optic tuning mechanism of the LN multimode waveguide, where microstructured serrated array electrodes are employed to fine tune the output beam upon its reconfigurable output position. Our results provide new, to the best of our knowledge, insight for molding the flow of light in multimode waveguides and shed new light on beam steering photonic devices.
In this study, a tin monoselenide (SnSe)-based all-optical modulator is firstly demonstrated with high tuning efficiency, broad bandwidth, and fast response time. The SnSe nanoplates are deposited in the microfiber knot resonator (MKR) on MgF2 substrate and change its transmission spectra by the external laser irradiation. The SnSe nanoplates and the microfiber are fabricated using the liquid-phase exfoliation method and the heat-flame taper-drawing method, respectively. Due to the strong absorption and enhanced light–matter interaction of the SnSe nanoplates, the largest transmitted power tunability is approximately 0.29 dB/mW with the response time of less than 2 ms. The broad tuning bandwidth is confirmed by four external pump lights ranging from ultraviolet to near-infrared. The proposed SnSe-coated microfiber resonator holds promising potential for wide application in the fields of all-optical tuning and fiber sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.