The phase, luminescence spectrum, chromaticity and afterglow properties of rare-earth strontium aluminate luminescent fibers, which appear the primary colors of red, yellow and blue in the sun, were measured by XRD, fluorescence spectrometer, spectral scanning-meter and illuminometer. With the analysis, the experiment results indicated that the emission peak of yellow and blue luminescent fibers were located at 520 nm, which were caused by transition of Eu 2+ . The crystal phase structure of red luminescent fiber was destructed, the yellow light emission being created at 580 nm. This may be the transition of Dy 3+ of rare-earth strontium aluminate. The three kinds of chromatic light of fiber are yellow, yellow-green and green light successively (The illumination strength is declining with the order of rare-earth strontium aluminate, yellow, blue and red). Comparing to rare-earth strontium aluminate, the afterglow duration of luminescent fibers were extended.
Bubble electrospinning technology can be used for mass production of nanofibers, it has been widely used in polymer electrospinning such as PVA, PVP and PAN, but there are no reports on the preparation of composite phase-change nanofibers by this method. In this paper, the transparent solution 1(PEG was put into formic acid according to the mass fraction of 60%) was mixed with the transparent solution 2 (PA66 was put into formic acid according to the mass fraction of 15%) according to the mass ratio of 15:85 , 25:75 , 35:65 and 45:55 to prepare four kinds of spinning solutions. And the pure PA66 nanofiber membrane(PNM) and PA66/PEG composite nanofiber membrane(PGCNM) were fabricated by the improved bubble electrospinning device on the basis of bubble electrospinning device invented by He Jihuan etc Also we analyzed their surface microstructure and tested their mechanical properties, thermal properties and molecular structure. The lower the content of PA66, the smaller the adhesion granular matter on the nanofiber surface and the thicker the diameter of the nanofiber, but the surface of the nanofiber is more smooth. The PGNCM appeared double absorption peak at 1515.5 cm−1 and 1642 cm−1 and existed weak absorption peak at 3298 cm−1 ∼ 3302 cm−1. The tensile strength and the elongation at break of the PGNCM was less than that of the PNM. The hot decomposition process of the PGNCM was composed the melting exothermic process of PEG and PA66. When the mixed ratio between PA66 and PEG was 15:85, the decomposition rate of residues between 210 ∼ 310 °C was the fastest.
Yarn linear density and linear density unevenness between fragments involve the mass and mass variation of yarn per unit length, which are important indices to reflect the uniformity of yarn thickness. Aiming at the shortcomings of the traditional testing method, which uses a yarn length tester to test these indices by counting length first and then cutting and measuring weight, a testing device that measures weight and counts length synchronously is designed and developed, so that the yarn can be continuous, recyclable, and reusable. Length counting is conducted by a length-counting disk connected to a photoelectric coded disk, and the result of length counting can be accurate to 0.01 m. The original skein frame with a perimeter of 1 m is replaced, so that the error caused by yarn overlapping is avoided. Through program control, the testing of a plurality of groups of linear density values can be completed at one time to calculate the linear density unevenness of different fragments of yarn, and the yarn can be led to a recovery spool through a yarn guide cylinder to form a new package. Polyester/viscose 65/35 blended yarn was taken as a test sample and subjected to statistical analysis using SPSS software. It is found that the results of the newly developed device are closer to the arbitration value; the whole experiment is completed at one time, which avoids the secondary error and reduces the labor intensity; and the raw materials can be recycled, which saves labor and raw material costs. The device has high value for industrialization and popularization.
The PAN spinning solution was chosen as the spiral spinning research object. Laminar flow theory was used to straighten and align macromolecules, and spiral spinning needles were used to control the spiral twisting of straightened PAN macromolecules. The internal spiral arrangement of PAN nanofibers became more compact as the helix number of spinning needles increased. The TEM (transmission electron microscope) was used to photograph the motion trajectory of TiO2 (titanium dioxide) nanoparticles in nanofibers, which directly confirmed the feasibility of the spiral spinning principle. SEM (Scanning Electronic Microscopy) observations revealed that the appearance of the PAN nanofiber membranes changed to some extent under spiral physical technology. The analysis of the tensile and bursting properties of PAN nanofiber membranes demonstrated that the structure of the nanofibers changed significantly after spiral spinning. The pore structure, electrical resistance, and antibacterial properties of PAN nanofiber membrane all reached optimal values at the optimal helix number of spinning needle.
Natural silk fiber derived from the Bombyx mori (B. mori) silkworm has long been used as a luxury raw material in textile industry because of its shimmering appearance and durability, and as surgical suture for its high strength and flexibility. Regenerated silk fibroin, as the main protein extracted from the cocoons of the B. mori silkworm, recently has gained considerable attention due to its outstanding properties, including facile processability, superior biocompatibility, controllable biodegradation, and versatile functionalization. Tremendous effort has been made to fabricate silk fibroin into various promising materials with controlled structural and functional characteristics for advanced utilities in a multitude of biomedical applications, flexible optics, electronics devices, and filtration systems. Herein, reverse engineered silk fibroin extraction methods are reviewed, recent advances in extraction techniques are discussed. Fabrication methods of silk fibroin materials in various formats are also addressed in detail; in particular, progress in new fabrication technologies is presented. Attractive applications of silk fibroin-based materials are then summarized and highlighted. The challenges faced by current approaches in production of silk fibroin-based materials and future directions acquired for pushing these favorable materials further toward above mentioned applications are further elaborated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.