A method of fabricating multilayer focusing mirrors that can focus X-rays down to 10 nm or less was established in this study. The wavefront aberration induced by multilayer Kirkpatrick–Baez mirror optics was measured using a single grating interferometer at a photon energy of 9.1 keV at SPring-8 Angstrom Compact Free Electron Laser (SACLA), and the mirror shape was then directly corrected by employing a differential deposition method. The accuracies of these processes were carefully investigated, considering the accuracy required for diffraction-limited focusing. The wavefront produced by the corrected multilayer focusing mirrors was characterized again in the same manner, revealing that the root mean square of the wavefront aberration was improved from 2.7 (3.3) rad to 0.52 (0.82) rad in the vertical (horizontal) direction. A wave-optical simulator indicated that these wavefront-corrected multilayer focusing mirrors are capable of achieving sub-10-nm X-ray focusing.
X-ray spectromicroscopy with a full-field imaging technique is a powerful method for chemical analysis of heterogeneous complex materials with a nano-scale spatial resolution. For imaging optics, an X-ray reflective optical system has excellent capabilities with highly efficient, achromatic, and long-working-distance properties. An advanced Kirkpatrick–Baez geometry that combines four independent mirrors with elliptic and hyperbolic shapes in both horizontal and vertical directions was developed for this purpose, although the complexity of the system has a limited applicable range. Here, we present an optical system consisting of two monolithic imaging mirrors. Elliptic and hyperbolic shapes were formed on a single substrate to achieve both high resolution and sufficient stability. The mirrors were finished with a ~1-nm shape accuracy using elastic emission machining. The performance was tested at SPring-8 with a photon energy of approximately 10 keV. We could clearly resolve 50-nm features in a Siemens star without chromatic aberration and with high stability over 20 h. We applied this system to X-ray absorption fine structure spectromicroscopy and identified elements and chemical states in specimens of zinc and tungsten micron-size particles.
We propose an extended X-ray adaptive zoom condenser that can form an intermediate virtual focus. The system comprises two deformable mirrors for focusing within a single dimension and can vary its numerical aperture (NA) without changing the positions of the light source, mirrors, or final focus. The desired system NA is achieved simply by controlling the mirror surfaces, which enables conversion between convex and concave forms, by varying the position of the intermediate virtual focus. A feasibility test at SPring-8 under a photon energy of 10 keV demonstrated that the beam size can be varied between 134 and 1010 nm.
We propose the use of two pairs of concave-convex mirrors as imaging optics for the compact full-field x-ray microscope with high resolution and magnification factors. The optics consists of two pairs of hyperbolic convex and elliptical concave mirrors with the principal surface near the object, consequently enabling the focal length to be 10 times shorter than conventional advanced Kirkpatrick-Baez mirror optics. This paper describes characteristics of the optics calculated by ray-tracing and wave-optical simulators. The expected spatial resolution is approximately 40 nm with a wide field of view of more than 10 μm and a total length of about 2 m, which may lead to the possibility of laboratory-sized, achromatic, and high-resolution full-field x-ray microscopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.