Lymphoid neogenesis is associated with antibody-mediated autoimmune diseases such as Sjogren's syndrome and rheumatoid arthritis. Although systemic lupus erythematosus is the prototypical B-cell-mediated autoimmune disease, the role of lymphoid neogenesis in its pathogenesis is unknown. Intraperitoneal injection of 2,6,10,14-tetramethyl-pentadecane (TMPD, pristane) or mineral oil causes lipogranuloma formation in mice, but only TMPD-treated mice develop lupus. We report that lipogranulomas are a form of lymphoid neogenesis. Immunoperoxidase staining of lipogranulomas revealed B cells, CD4(+) T cells, and dendritic cells and in some cases organization into T- and B-cell zones. Lipogranulomas also expressed the lymphoid chemokines CCL21, CCL19, CXCL13, CXCL12, and CCL22. Expression of the type I interferon (IFN-I)-inducible genes Mx1, IRF7, IP-10, and ISG-15 was greatly increased in TMPD- versus mineral oil-induced lipogranulomas. Dendritic cells from TMPD lipogranulomas underwent activation/maturation with high CD86 and interleukin-12 expression. Magnetic bead depletion of dendritic cells markedly diminished IFN-inducible gene (Mx1) expression. We conclude that TMPD-induced lupus is associated with the formation of ectopic lymphoid tissue containing activated dendritic cells producing IFN-I and interleukin-12. In view of the increased IFN-I production in systemic lupus erythematosus, these studies suggest that IFN-I from ectopic lymphoid tissue could play a role in the pathogenesis of experimental lupus in mice.
Recent progress in understanding the pathogenesis of rheumatoid arthritis (RA) in parallel with elucidation of the functional role of the prostaglandin receptor subfamily has revealed an important regulatory role of PGE2, in addition to its well-known proinflammatory role in the progression of RA. Characteristic features of RA are synovial proliferation and pannus formation, which result in the destruction of cartilage and bone. Pannus tissue is mainly composed of macrophages and fibroblast-like synoviocytes. Both T cell-derived IL-17 and macrophage-derived TNF-alpha seem to play a central role in the progression of proinflammatory cascades in RA. PGE2 is also produced in response to proinflammatory cytokines, which in turn negatively regulates both IL-17 and TNF-alpha expression and TNF/IL-1-induced activation of fibroblast-like synoviocytes through EP2/EP4 receptors, resulting in the modulation of proinflammatory cascades. IL-17- and TNF-activated macrophages differentiate into osteoclasts in the presence of M-CSF and RANKL expressed by fibroblast-like synoviocytes. PGE2 binding to EP4 stimulates osteoclastogenesis through enhancing RANKL expression. At the same time, PGE2 suppresses osteoclastogenesis by inhibiting M-CSF expression of fibroblast-like synoviocytes as well as both IL-17 and IL-17-induced TNF-alpha expression of macrophages. PGE2-EP4 also activates osteoblastogenesis through increasing cbfa1 and osterix, two essential transcription factors required for bone formation. The net effect of PGE2 may direct toward repair of eroding bone through the suppression of inflammation and enhancement of bone remodeling. Here, we discuss a diverse action of PGE2/EP receptors and their important regulatory roles in the pathogenesis of RA, which may lead to a novel therapeutic strategy.
Prostaglandin E(2) (PGE(2)) can have pro- or anti-inflammatory effects, depending on engagement of different PGE(2) receptor (EP) subtypes. The role of EPs in regulating autoimmune inflammation was studied in the murine arthritis/lupus model induced by pristane. Peritoneal macrophages were isolated (biomagnetic beads) from BALB/c, DBA/1, or C57BL/6 mice treated with pristane (intraperitoneally, 3 months earlier) or thioglycolate (3 days earlier) or with untreated controls. EPs, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) mRNA expression was examined by reverse transcriptase-polymerase chain reaction (RT-PCR). Cells were cultured unstimulated or stimulated with lipopolysaccharide (LPS) or LPS + interferon-gamma in combination with EP subtype-specific agonists. Tumor necrosis factor alpha (TNF-alpha) and interleukin (IL)-6 production was tested by enzyme-linked immunosorbent assay (culture supernatant) and flow cytometry. TNF-alpha mRNA levels also were examined. High levels of EPs (EP4/2>EP1>EP3), iNOS, and COX-2 mRNA were expressed in peritoneal macrophages from pristane-treated but not untreated or thioglycolate-treated mice (RT-PCR). TNF-alpha production was inhibited 50-70% at 2-24 h by EP4/2 agonists, whereas IL-6 was enhanced up to approximately 220%. TNF-alpha inhibition is mediated partly via the protein kinase A pathway and partly via IL-6. Intracellular TNF-alpha staining was inhibited 20% by EP4/2 agonists. TNF-alpha mRNA levels were inhibited 50-70% at 2-24 h, indicating that TNF-alpha inhibition was partly at the level of transcription. EP1/3 agonists had little effect. Synovial cells from mice with pristane-induced arthritis (DBA/1) also expressed EP2/4, and the EP2/4 agonist inhibited TNF-alpha production. PGE(2) can modulate inflammatory reactions via the EP2/4 receptor through its regulation of TNF-alpha and IL-6. Modification of EP signaling may be a new therapeutic strategy in inflammatory/autoimmune diseases.
Objective. Autoantibodies to aminoacyl transfer RNA synthetases, such as histidyl (Jo-1), threonyl (PL-7), alanyl (PL-12), glycyl (EJ), and isoleucyl (OJ), are closely associated with a subset of patients with polymyositis/dermatomyositis (PM/DM) complicated by interstitial lung disease (ILD). Anti-Jo-1 is by far the most common, found in 15-25% of patients with PM/ DM, whereas the other types are found in only ϳ3% of these patients. In this study, the clinical associations of these autoantibodies in Japanese patients with PM/DM were investigated.Methods. The diagnoses of PM/DM and amyopathic DM (ADM) were based on the Bohan and Peter criteria and Sontheimer's definition, respectively. Sera from 36 Japanese patients with PM/DM (13 with PM, 20 with DM, 3 with ADM) were screened by immunoprecipitation and by enzyme-linked immunosorbent assay (for Jo-1). Clinical and laboratory data were collected.Results. The frequencies of autoantibodies to Jo-1 (22%) and to EJ, OJ, and PL-12 (3-6%) were similar to those found in previous studies, including studies of Japanese subjects. However, anti-PL-7 was found in 17% of patients, in contrast to a frequency of 1-4% in previous studies (P < 0.02-0.0002). The 6 anti-PL-7-positive patients were not related, and no skewing in year or month of disease development, place of residence or work, or occupation was found. All patients had ILD, consistent with the clinical features of antisynthetase-positive patients. The patients with anti-PL-7 had lower serum muscle enzyme levels and milder muscle weakness (P < 0.05) compared with anti-Jo-1-positive patients.Conclusion. Anti-PL-7 was found at an unusually high frequency in this group of Japanese patients with myositis. Although anti-PL-7, similar to anti-Jo-1, is associated with PM/DM with ILD, muscle involvement in the patients with anti-PL-7 appeared to be milder than that in the anti-Jo-1 subset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.