AimThe aim of this study was to determine the possibility of improving erectile dysfunction using cell therapy with either human urine-derived stem cells (USCs) or USCs genetically-modified with FGF2 in a type 2 diabetic rat model.MethodsHuman USCs were collected from 3 healthy donors. USCs were transfected with FGF2 (USCs-FGF2). Sixty-five SD male rats were divided into five groups (G). A control group of normal rats (G1, n = 10), and four other test groups of type 2 diabetic erectile dysfunction rats: PBS as a negative control (G2, n = 10), USCs (G3, n = 15), lentivirus-FGF2 (G4, n = 15), and USCs-FGF2 (G5, n = 15). Diabetes was induced in the rats via a high fat diet for 28 days and a subsequent intraperitoneal injection of streptozotocin (35 mg/kg). Erectile dysfunction was screened with apomorphine (100 μg/kg). Cell injections in the test groups (G2–G5) occurred directly into the corpora cavernosa. The implanted cells were tracked at 7 days (n = 5 animals/G) and 28 days (n = 10 animals/G) post injection. Mean arterial pressure (MAP), intracavernosal pressure (ICP), expression of endothelial markers (CD31, VEGF and eNOS), smooth muscle markers (desmin and smoothelin), histological changes and erectile function were assessed for each group.ResultsUSCs expressed mesenchymal stem cell markers, and secreted a number of proangiogenic growth factors. USCs expressed endothelial cell markers (CD31 and vWF) after transfection with FGF2. Implanted USCs or USCs-FGF2 displayed a significantly raised ICP and ICP/MAP ratio (p<0.01) 28 days after intracavernous injection. Although few cell were detected within the implanted sites, histological and western blot analysis demonstrated an increased expression of endothelial and smooth muscle markers within the cavernous tissue following USC or USC-FGF2 injection.ConclusionsThe paracrine effect of USCs or USCs-FGF2 induced improvement of erectile function in type 2 diabetic rats by recruiting resident cells and increasing the endothelial expression and contents of smooth muscle.
SummaryExosomes are membranous nanovesicles of endocytic origin that carry and transfer regulatory bioactive molecules and mediate intercellular communication between cells and tissues. Although seminal exosomes have been identified in human seminal plasma, their exact composition and possible physiologic function remain unknown. The objective of this study was to perform a comprehensive proteomics analysis of exosomes derived from human seminal plasma. Seminal exosomes were isolated and purified from 12 healthy donors using a 30% sucrose cushion‐based exosome‐isolation protocol, followed by characterization by western blot, transmission electron microscopy, and nanoparticle tracking analysis before performing extensive liquid chromatography tandem mass spectrometry proteomics analysis. The identified proteins were analyzed by bioinformatics analysis, and seminal exosomes‐associated proteins were selectively validated by western blot. A total of 1474 proteins were identified in all seminal exosomes samples, with Gene Ontology analysis demonstrating that these identified seminal exosomes‐associated proteins were mostly linked to ‘exosomes,’ ‘cytoplasm,’ and ‘cytosol.’ Bioinformatics analysis indicated that these proteins were mainly involved in biologic processes, including metabolism, energy pathways, protein metabolism, cell growth and maintenance, and transport. Of these identified proteins, PHGDH, LGALS3BP, SEMG1, ACTB, GAPDH, and the exosomal‐marker protein ALIX were validated by western blot. This study provided a more comprehensive description of the seminal exosomes proteome and could also be a resource for further screening of biomarkers and comparative proteomics studies, including those associated with male infertility and prostate cancer.
The aim of this study was to determine whether adipose derived stem cells (ADSCs) expressing vascular endothelial growth factor (VEGF) gene can improve endothelial function, recover the impaired VEGF signaling pathway and enhance smooth muscle contents in a rat diabetic erectile dysfunction (DED) model. DED rats were induced via intraperitoneal injection of streptozotocin (40 mg/kg), and then screened by apomorphine (100 µg/kg). Five groups were used (n = 12/group)–Group 1 (G1): intracavernous injection of lentivirus-VEGF; G2: ADSCs injection; G3: VEGF-expressing ADSCs injection; G4: Phosphate buffered saline injection; G1–G4 were DED rats; G5: normal rats. The mean arterial pressure (MAP) and intracavernosal pressure (ICP) were measured at days 7 and 28 after the injections. The components of the VEGF system, endothelial, smooth muscle, pericytes markers in cavernoursal tissue were assessed. On day 28 after injection, the group with intracavernosum injection of ADSCs expressing VEGF displayed more efficiently and significantly raised ICP and ICP/MAP (p<0.01) than those with ADSCs or lentivirus-VEGF injection. Western blot and immunofluorescent analysis demonstrated that improved erectile function by ADSCs-VEGF was associated with increased expression of endothelial markers (VEGF, VEGF R1, VEGF R2, eNOS, CD31 and vWF), smooth muscle markers (a-actin and smoothelin), and pericyte markers (CD146 and NG2). ADSCs expressing VEGF produced a therapeutic effect and restored erectile function in diabetic rats by enhancing VEGF-stimulated endothelial function and increasing the contents of smooth muscle and pericytes.
Introduction Men frequently develop diabetic erectile dysfunction (DMED), as a result of endothelial dysfunction. DMED patients often have reduced efficacy with phosphodiesterase type 5 inhibitors therapy. Aim To determine whether chronic sildenafil administration can modify the impaired vascular endothelial growth factor (VEGF) system and improve the erectile function in rats with diabetic erectile dysfunction. Methods A group of Sprague Dawley rats (n=30) with DMED were induced by intraperitoneal injection of streptozotocin (40 mg/kg) and screened by subcutaneous injection of Apomorphine (100 mg/kg). They were then exposed to either vehicle or sildenafil (prescribed in our hospital, 5 mg/kg and 10 mg/kg, respectively) for 10 weeks. An additional nondiabetic and age-matched control group (n=10) was also allocated and given the routine diet for the same period. Assessments were performed to both groups at 36 hours after the last dose of sildenafil. Penile intracavernous pressure (ICP), mean arterial pressure (MAP), penile tissue morphology, immunohistologic analysis, and Western blot analysis of VEGF, VEGFR1, and eNOS were determined. Main Outcome Measure Functional, morphological, and proteomical changes on penile structures by the chronic Sildenafil (5 mg/kg and 10 mg/kg, respectively) administration were determined. Results A significant increase of ICP, ICP/MAP ratio, and area under the curve were observed in the both groups treated by sildenafil (5 mg/kg and 10 mg/kg, respectively), compared with the DMED rats without receiving Sildenafil. Immunohistochemical staining of their penile tissue showed a decrease in VEGF, VEGFR1, and eNOS staining in the controlled group compared with an improvement in the chronic sildenafil administration group. Western blot analysis demonstrated exactly the same results. Conclusion We demonstrated that daily sildenafil administration can restore the impaired VEGF system in the penis of DMED rats and progressively improve both erectile function and endothelial function, suggesting a potential general mechanism of improved signaling through the VEGF/eNOS signaling cascade.
The aim of this study was to investigate whether intracavernous injection of urine-derived stem cells (USCs) or USCs genetically modified with pigment epithelium-derived factor (PEDF) could protect the erectile function and cavernous structure in a bilateral cavernous nerve injury-induced erectile dysfunction (CNIED) rat model. USCs were cultured from the urine of six healthy male donors. Seventy-five rats were randomly divided into five groups ( n = 15 per group): sham, bilateral cavernous nerve (CN) crush injury (BCNI), USC, USC, and USC groups. The sham group received only laparotomy without CN crush injury and intracavernous injection with phosphate-buffered saline (PBS). All of the other groups were subjected to BCNI and intracavernous injection with PBS, USCs, USCs, or USCs, respectively. The total intracavernous pressure (ICP) and the ratio of ICP to mean arterial pressure (ICP/MAP) were recorded. The penile dorsal nerves, the endothelium, and the smooth muscle were assessed within the penile tissue. The USC and USC groups displayed more significantly enhanced ICP and ICP/MAP ratio ( p < 0.05) 28 days after cell transplantation. Immunohistochemistry (IHC) and Western blot analysis demonstrated that the protection of erectile function and the cavernous structure by USCs was associated with an increased number of nNOS-positive fibers within the penile dorsal nerves, improved expression of endothelial markers (CD31 and eNOS) and a smooth muscle marker (smoothelin), an enhanced smooth muscle to collagen ratio, decreased expression of transforming growth factor-β1 (TGF-β1), and decreased cell apoptosis in the cavernous tissue. The paracrine effect of USCs and USCs prevented the destruction of erectile function and the cavernous structure in the CNIED rat model by nerve protection, thereby improving endothelial cell function, increasing the smooth muscle content, and decreasing fibrosis and cell apoptosis in the cavernous tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.