The past decade has witnessed the rapid development of brain-computer interfaces (BCIs). The contradiction between communication rates and tedious training processes has become one of the major barriers restricting the application of steady-state visual-evoked potential (SSVEP)-based BCIs. A turbo detector was proposed in this study to resolve this issue. The turbo detector uses the filter bank canonical correlation analysis (FBCCA) as the first-stage detector and then utilizes the soft information generated by the first-stage detector and the pool of identified data generated during use to complete the second-stage detection. This strategy allows for rapid performance improvements as the data pool size increases. A standard benchmark dataset was used to evaluate the performance of the proposed method. The results show that the turbo detector can achieve an average ITR of 130 bits/min, which is about 8% higher than FBCCA. As the size of the data pool increases, the ITR of the turbo detector could be further improved.
This work studied the event-detection problem in an Internet of Things (IoT) system, where a group of sensor nodes are placed in the region of interest to capture sparse active event sources. Using compressive sensing (CS), the event-detection problem is modeled as recovering the high-dimensional integer-valued sparse signal from incomplete linear measurements. We show that the sensing process in IoT system produces an equivalent integer CS using sparse graph codes at the sink node, for which one can devise a simple deterministic construction of a sparse measurement matrix and an efficient integer-valued signal recovery algorithm. We validated the determined measurement matrix, uniquely determined the signal coefficients, and performed an asymptotic analysis to examine the performance of the proposed approach, namely event detection with integer sum peeling (ISP), with the density evolution method. Simulation results show that the proposed ISP approach achieves a significantly higher performance compared to existing literature at various simulation scenario and match that of the theoretical results.
Feature selection has been widely used in machine learning and data mining since it can alleviate the burden of the so-called curse of dimensionality of high-dimensional data. However, in previous works, researchers have designed feature selection methods with the assumption that all the information from a data set can be observed. In this paper, we propose unsupervised and supervised feature selection methods for use with incomplete data, further introducing an L2,1 norm and a reconstruction error minimization method. Specifically, the proposed feature selection objective functions take advantage of an indicator matrix reflecting unobserved information in incomplete data sets, and we present pairwise constraints, minimizing the L2,1-norm-robust loss functionand performing error reconstruction simultaneously. Furthermore, we derive two alternative iterative algorithms to effectively optimize the proposed objective functions and the convergence of the proposed algorithms is proven theoretically. Extensive experimental studies were performed on both real and synthetic incomplete data sets to demonstrate the performance of the proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.