Pulse wave carries comprehensive information regarding the human cardiovascular system (CS), which is essential for directly capturing CS parameters. More importantly, cuffless blood pressure (BP) is one of the most critical markers in CS. Accurately measuring BP via the pulse wave for continuous and noninvasive diagnosis of a disease associated with hypertension remains a challenge and highly desirable. Here, a flexible weaving constructed self‐powered pressure sensor (WCSPS) is reported for measurement of the pulse wave and BP in a noninvasive manner. The WCSPS holds an ultrasensitivity of 45.7 mV Pa−1 with an ultrafast response time of less than 5 ms, and no performance degradation is observed after up to 40 000 motion cycles. Furthermore, a low power consumption sensor system is developed for precisely monitoring pulse wave from the fingertip, wrist, ear, and ankles. A practical measurement is performed with 100 people with ages spanning from 24 to 82 years and different health statuses. The discrepancy between the measured BP results using the WCSPS and that provided by the commercial cuff‐based device is about 0.87–3.65%. This work demonstrates an efficient and cost‐effective way for human health monitoring, which would be a competitive alternative to current complex cardiovascular monitoring systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.