Summary
Stringent control of the NF-κB and type I interferon pathways is critical to effective host immune responses, yet the molecular mechanisms that negatively regulate these pathways are poorly understood. Here we show that NLRC5, a member of the NOD-like protein family, can inhibit the IKK complex and RIG-I/MDA5 function. NLRC5 strongly inhibited NF-κB-dependent responses by interacting with IKKα/IKKβ and blocking their phosphorylation. It also interacted with RIG-I and MDA5, but not with MAVS, to potently inhibit RIG-I-like receptor-mediated type I interferon responses. Consistent with these observations, NLRC5-specific siRNA knockdown not only enhanced the activation of NF-κB and its responsive genes, TNF-α and IL-6, but also promoted type I interferon signaling and antiviral immunity. Our findings identify NLRC5 as a key negative regulator that blocks two central components of the NF-κB and type I interferon pathways, and hence is a pivotal element in the homeostatic control of the innate immune system.
Cyclic GMP-AMP synthase (cGAS) is an essential DNA virus sensor that triggers type I interferon (IFN) signaling by producing cGAMP to initiate antiviral immunity. However, post-translational regulation of cGAS remains largely unknown. We report that K48-linked ubiquitination of cGAS is a recognition signal for p62-depdendent selective autophagic degradation. The induction of TRIM14 by type I IFN accelerates cGAS stabilization by recruiting USP14 to cleave the ubiquitin chains of cGAS at lysine (K) 414. Knockout of TRIM14 impairs herpes simplex virus type 1 (HSV-1)-triggered antiviral responses in a cGAS-dependent manner. Due to impaired type I IFN production, Trim14 mice are highly susceptible to lethal HSV-1 infection. Taken together, our findings reveal a positive feedback loop of cGAS signaling generated by TRIM14-USP14 and provide insights into the crosstalk between autophagy and type I IFN signaling in innate immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.