The high frequency of activating RAS or BRAF mutations in cancer provides strong rationale for targeting the mitogen-activated protein kinase (MAPK) pathway. Selective BRAF and MAP-ERK kinase (MEK) inhibitors have shown clinical effi cacy in patients with melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the extracellular signal-regulated kinase (ERK) signaling pathway. Here, we describe the identifi cation and characterization of SCH772984, a novel and selective inhibitor of ERK1/2 that displays behaviors of both type I and type II kinase inhibitors. SCH772984 has nanomolar cellular potency in tumor cells with mutations in BRAF , NRAS , or KRAS and induces tumor regressions in xenograft models at tolerated doses. Importantly, SCH772984 effectively inhibited MAPK signaling and cell proliferation in BRAF or MEK inhibitor-resistant models as well as in tumor cells resistant to concurrent treatment with BRAF and MEK inhibitors. These data support the clinical development of ERK inhibitors for tumors refractory to MAPK inhibitors. SIGNIFICANCE: BRAF and MEK inhibitors have activity in MAPK-dependent cancers with BRAF or RAS mutations. However, resistance is associated with pathway alterations resulting in phospho-ERK reactivation. Here, we describe a novel ERK1/2 kinase inhibitor that has antitumor activity in MAPK inhibitor-naïve and MAPK inhibitor-resistant cells containing BRAF or RAS mutations. Cancer Discov; 3(7); 742-50.
Summary Stringent control of the NF-κB and type I interferon pathways is critical to effective host immune responses, yet the molecular mechanisms that negatively regulate these pathways are poorly understood. Here we show that NLRC5, a member of the NOD-like protein family, can inhibit the IKK complex and RIG-I/MDA5 function. NLRC5 strongly inhibited NF-κB-dependent responses by interacting with IKKα/IKKβ and blocking their phosphorylation. It also interacted with RIG-I and MDA5, but not with MAVS, to potently inhibit RIG-I-like receptor-mediated type I interferon responses. Consistent with these observations, NLRC5-specific siRNA knockdown not only enhanced the activation of NF-κB and its responsive genes, TNF-α and IL-6, but also promoted type I interferon signaling and antiviral immunity. Our findings identify NLRC5 as a key negative regulator that blocks two central components of the NF-κB and type I interferon pathways, and hence is a pivotal element in the homeostatic control of the innate immune system.
SUMMARY Tight regulation of NF-κB signaling is essential for innate and adaptive immune responses, yet the molecular mechanisms responsible for its negative regulation are not completely understood. Here we report that NLRX1, a NOD-like receptor family member, negatively regulates Toll-like receptor-mediated NF-κB activation. NLRX1 interacts with TRAF6 or IκB kinase (IKK) in an activation signal-dependent fashion. Upon LPS stimulation, NLRX1 is rapidly ubiquitinated, disassociates from TRAF6 and then binds to the IKK complex, resulting in inhibition of IKKα/β phosphorylation and NF-κB activation. Knockdown of NLRX1 in various cell types markedly enhances IKK phosphorylation and the production of NF-κB-responsive cytokines after LPS stimulation. We further provide in vivo evidence that NLRX1 knockdown in mice markedly enhances susceptibility to LPS-induced septic shock and plasma IL-6 level. Our study identifies a previously unrecognized role for NLRX1 in the negative regulation of TLR-induced NF-κB activation by dynamically interacting with TRAF6 and the IKK complex.
Stringent control of the type I interferon signaling pathway is important for maintaining host immune responses and homeostasis, yet the molecular mechanisms responsible for its tight regulation are still poorly understood. Here we report that the pattern-recognition receptor NLRP4 regulated the activation of type I interferon mediated by double-stranded RNA or DNA by targeting the kinase TBK1 for degradation. NLRP4 recruited the E3 ubiquitin ligase DTX4 to TBK1 for Lys48 (K48)-linked polyubiquitination at Lys670, which led to degradation of TBK1. Knockdown of either DTX4 or NLRP4 abrogated K48-linked ubiquitination and degradation of TBK1 and enhanced the phosphorylation of TBK1 and the transcription factor IRF3. Our results identify a previously unrecognized role for NLRP4 in the regulation of type I interferon signaling and provide molecular insight into the mechanisms by which NLRP4-DTX4 targets TBK1 for degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.