Diabetic keratopathy (DK) is an important diabetic complication at the ocular surface. Chronic low-grade inflammation mediated by the NLRP3 inflammasome promotes pathogenesis of diabetes and its complications. However, the effect of the NLRP3 inflammasome on DK pathogenesis remains elusive. Wild-type (WT) and Nlrp3 knockout (KO) C57BL/6 mice were used to establish a type I diabetes model by intraperitoneal injection of streptozotocin. The effect of the NLRP3 inflammasome on diabetic corneal wound healing and never regeneration was examined by a corneal epithelial abrasion model. Western blot, immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA) and pharmacological treatment were performed to investigate the regulatory mechanism of advanced glycation end products (AGEs) on NLRP3 inflammasome activation and corneal wound healing in vivo. The cultured mouse corneal epithelial cells (TKE2) were used to evaluate the effect and mechanism of AGEs on NLRP3 inflammasome activation in vitro. We revealed that NLRP3 inflammasome-mediated inflammation and pyroptosis contributed to DK pathogenesis. Under physiological conditions, the NLRP3 inflammasome was required for corneal wound healing and nerve regeneration. However, under a diabetic scenario, sustained activation of the NLRP3 inflammasome resulted in postponed corneal wound healing and impaired nerve regeneration. Mechanistically, the accumulated AGEs promoted hyperactivation of the NLRP3 inflammasome through ROS production. Moreover, genetically and pharmacologically blocking the AGEs/ROS/NLRP3 inflammasome axis significantly expedited diabetic corneal epithelial wound closure and nerve regeneration. Our results revealed that AGEs-induced hyperactivation of the NLRP3 inflammasome resulted in delayed diabetic corneal wound healing and impaired nerve regeneration, which further highlighted the NLRP3 inflammasome as a promising target for DK treatment.
Abstract:Purpose: This research aims to study the influences of heparin (HP) on the aggregation of nano calcium oxalate monohydrate (COM) and nano calcium oxalate dihydrate (COD) with mean diameter of about 50 nm. Method: The influences of different concentrations of HP on the mean diameter and Zeta potential of nano COM and nano COD were investigated using a nanoparticle size Zeta potential analyzer. Results: HP could be adsorbed on the surface of nano COM and nano COD crystals, leading to an increase in the absolute value of Zeta potential on the crystals and an increase in the electrostatic repulsion force between crystals. Consequently, the aggregation of the crystals is reduced and the stability of the system is improved. The strong adsorption ability of HP was closely related to the -OSO3 − and -COO − groups contained in the HP molecules. X-ray photoelectron spectroscopy confirmed the coordination of HP with Ca 2+ ions of COM and COD crystals. Conclusion: HP could inhibit the aggregation of nano COM and nano COD crystals and increase their stability in aqueous solution, which is conducive in inhibiting the formation of calcium oxalate stones.
Abstract:The property changes of urinary nanocrystallites in 13 patients with calcium oxalate (CaOx) stones were studied before and after ingestion of potassium citrate (K 3 cit), a therapeutic drug for stones. The analytical techniques included nanoparticle size analysis, transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The studied properties included the components, morphologies, zeta potentials, particle size distributions, light intensity autocorrelation curves, and polydispersity indices (PDIs) of the nanocrystallites. The main components of the urinary nanocrystallites before K 3 cit intake included uric acid, β-calcium phosphate, and calcium oxalate monohydrate. After K 3 cit intake, the quantities, species, and percentages of aggregated crystals decreased, whereas the percentages of monosodium urate and calcium oxalate dehydrate increased, and some crystallites became blunt. Moreover, the urinary pH increased from 5.96 ± 0.43 to 6.46 ± 0.50, the crystallite size decreased from 524 ± 320 nm to 354 ± 173 nm, and the zeta potential decreased from −4.85 ± 2.87 mV to −8.77 ± 3.03 mV. The autocorrelation curves became smooth, the decay time decreased from 11.4 ± 3.2 ms to 4.3 ± 1.7 ms, and the PDI decreased from 0.67 ± 0.14 to 0.53 ± 0.19. These changes helped inhibit CaOx calculus formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.