Both the superficial and deep layers of the parafoveal microvasculature are attenuated in RP and correlated with reduced central visual function. The foveal microvasculature, especially in the deep layer, was relatively preserved until mild-to-moderately advanced stages.
Our analysis demonstrated that elevated aqueous flare is a significant risk factor for PSC formation. This result might provide insights into the association of inflammation and the pathogenesis of PSC formation in RP.
PURPOSE. To accelerate the development of new therapies, an inherited retinal degeneration model in a nonhuman primate would be useful to confirm the efficacy in preclinical studies. In this study, we describe the discovery of retinitis pigmentosa in a cynomolgus monkey (Macaca fascicularis) pedigree.METHODS. First, screening with fundus photography was performed on 1443 monkeys at the Tsukuba Primate Research Center. Ophthalmic examinations, such as indirect ophthalmoscopy, ERGs using RETeval, and optic coherent tomography (OCT) measurement, were then performed to confirm diagnosis.
RESULTS.Retinal degeneration with cystoid macular edema was observed in both eyes of one 14-year-old female monkey. In her examinations, the full-field ERGs were nonrecordable and the outer layer of the retina in the parafoveal area was not visible on OCT imaging. Moreover, less frequent pigmentary retinal anomalies also were observed in her 3-year-old nephew. His full-field ERGs were almost nonrecordable and the outer layer was not visible in the peripheral retina. His father was her cousin (the son of her mother's older brother) and his mother was her younger half-sibling sister with a different father.CONCLUSIONS. The hereditary nature is highly probable (autosomal recessive inheritance suspected). However, whole-exome analysis performed identified no pathogenic mutations in these monkeys.
In order to clarify the disease progression in retinitis pigmentosa (RP) and its related factors, reliable data on the changes in central visual function in RP are needed. In this longitudinal study, we examined 118 patients who were diagnosed with typical RP. Visual acuity (VA), visual field using a Humphrey Field Analyzer with the central 10-2 SITA-Standard program, and optical coherence tomography measurements were obtained. The slopes, which were derived from serial values of mean deviation (MD), macular sensitivity (MS), or foveal sensitivity (FS) obtained for each eye by a linear mixed model, were used for analysis. MS and FS were calculated as the average retinal sensitivity of 12 and 4 central points respectively. There were statistically significant interactions of times with levels of the central subfield thickness (CST) on the slopes of MS and FS. Compared to the eyes without macular complications, the eyes with macular complications had steeper MD, MS and FS slopes, and this interaction was no significant, but marginal trend for the MS or FS slope (P = 0.10, 0.05, respectively). The central retinal sensitivity (i.e., MS and FS) slopes calculated were effective indices of the progression of central visual function in RP.
These results demonstrated the divergence between the choroidal structure and blood function, and suggest that decreased choroidal flow, rather than the structural alteration, is closely associated with foveal degeneration in RP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.