A high-performance ITO-free transparent conductive film (TCF) has been made by combining high resolution Ag grids with a carbon nanotube (CNT) coating. Ag grids printed with flexography have a 20 μm line width at a grid interval of 400 μm. The Ag grid/CNT hybrid film exhibits excellent overall performance, with a typical sheet resistance of 14.8 Ω/□ and 82.6% light transmittance at room temperature. This means a 23.98% reduction in sheet resistance and only 2.52% loss in transmittance compared to a pure Ag grid film. Analysis indicates that filling areas between the Ag grids and interconnecting the silver nanoparticles with the CNT coating are the primary reasons for the significantly improved conductivity of the hybrid film that also exhibits excellent flexibility and mechanical strength compared to an ITO film. The hybrid film may fully satisfy the requirements of different applications, e.g. use as the anode of polymer solar cells (PSCs). The J-V curve shows that the power conversion efficiency (PCE) of the PSCs using the Ag grid/CNT hybrid anode is 0.61%, which is 24.5% higher than that of the pure Ag grids with a PCE of 0.49%. Further investigations to improve the performance of the solar cells based on the printed hybrid TCFs are ongoing.
Background: Locomat is a robotic exoskeleton providing guidance force and bodyweight support to facilitate intensive walking training for people with stroke. Although the Locomat has been reported to be effective in improving walking performance, the effects of training parameters on the neuromuscular control remain unclear. This study aimed to compare the muscle activities between Locomat walking and treadmill walking at a normal speed, as well as to investigate the effects of varying bodyweight support and guidance force on muscle activation patterns during Locomat walking in people with stroke. Methods: A cross-sectional study design was employed. Participants first performed an unrestrained walking on a treadmill and then walked in the Locomat with different levels of bodyweight support (30% or 50%) and guidance force (40% or 70%) at the same speed (1.2 m/s). Surface electromyography (sEMG) of seven muscles of the affected leg was recorded. The sEMG envelope was time-normalised and averaged over gait cycles. Mean sEMG amplitude was then calculated by normalising the sEMG amplitude with respect to the peak amplitude during treadmill walking for statistical analysis. A series of Non-parametric test and post hoc analysis were performed with a significance level of 0.05. Results: Fourteen participants with stroke were recruited at the Yangzhi Affiliated Rehabilitation Hospital of Tongji University (female n = 1; mean age 46.1 ± 11.1 years). Only the mean sEMG amplitude of vastus medialis oblique during Locomat walking (50% bodyweight support and 70% guidance force) was significantly lower than that during treadmill walking. Reducing both bodyweight and guidance increased muscle activity of gluteus medius and tibialis anterior. Activity of vastus medialis oblique muscle increased as bodyweight support reduced, while that of rectus femoris increased as guidance force decreased. Conclusions: The effects of Locomat on reducing muscle activity in people with stroke were minimized when walking at a normal speed. Reducing bodyweight support and guidance force increased the activity of specific muscles during Locomat walking. Effects of bodyweight support, guidance force and speed should be taken into account when developing individualized Locomat training protocols for clients with stroke.
Aiming at inadequate mechanical properties of Glass ionomer cement (GIC) commonly used in dental clinic, commercial and melt quenched GIC powders as control groups, homemade GIC powder was prepared by sol–gel route and modified by Nb2O5. The GIC samples were characterized by X-ray Diffraction (XRD), particle size analysis, Scanning Electron Microscope (SEM) and Fourier Transform Infrared (FT-IR). The compressive strength, Vickers hardness, working and net setting time were tested. The data was analyzed by one-way ANOVA. The XRD results showed that commercial, melt quenched and sol gel GIC powders were similar amorphous. D90 of three GIC powders and Nb2O5 powder were 26 μm, 17 μm, 29 μm and 19 μm respectively. 5% Nb2O5-GIC exhibited the highest values of compressive strength and Vickers hardness, which were 112.93 Mpa, 139.48 MPa and 142.25 MPa respectively, increased 19.11%, 30.56% and 16.51% (P <0.05); the Vickers hardness were 35.15 MPa, 36.23 MPa and 37.62 MPa, increased 18.03%, 29.95% and 16.32% (P <0.05) compared to those of unmodified GICs as well. There was no significant change of the FT-IR characteristic peaks of modified GIC. The working time of three kinds of GIC were 4'58 ", 3'28" and 4'10 ", the net setting time were 5'16", 3'15 "and 4'38" (standard is 1.5-6 minutes). It was concluded that the dispersion stiffened effect of niobium oxide could improve the mechanical properties of the filling GIC without affecting the clinical operating performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.