We previously reported that prostaglandin F2 alpha (PGF2 alpha) receptor is coupled to pertussis toxin (PTX)-sensitive GTP-binding protein (G protein) in osteoblast-like MC3T3-E1 cells [Miwa et al. (1990): Biochem Biophys Res Commun 171:1229-1235]. In the present study, we examined the effect of PGF2 alpha on the activation of phosphatidylcholine-hydrolyzing phospholipase D in MC3T3-E1 cells. PGF2 alpha stimulated the formation of choline in a dose-dependent manner in the range between 10 nM and 10 microM. The formation of choline was stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester. 4 alpha-Phorbol 12, 13-didecanoate, a PKC-nonactivating phorbol ester, had little effect on choline formation. The formation of choline stimulated by a combination of PGF2 alpha and TPA was additive. Staurosporine, an inhibitor for protein kinases, which inhibited the effect of TPA on choline formation, dose-dependently enhanced the formation of choline induced by PGF2 alpha. NaF, an activator of G protein, stimulated the formation of choline. The formation of choline stimulated by a combination of PGF2 alpha and NaF was not additive. NaF-induced formation of choline was dose-dependently enhanced by staurosporine. PTX dose-dependently inhibited the PGF2 alpha-induced formation of choline. These results strongly suggest that PGF 2 alpha activates phospholipase D independently from the activation of PKC in osteoblast-like cells and PTX-sensitive G protein is involved in the PGF2 alpha-induced phospholipase D activation.
Pituitary adenylate cyclase activating polypeptide (PACAP) inhibited dose dependently the DNA synthesis stimulated by arginine vasopressin (AVP) in cultured rat aortic smooth muscle cells (SMC). The inhibition was cell cycle dependent and the maximum inhibition was observed when added at the late G1 phase of the cell cycle. Vasoactive intestinal polypeptide (VIP), which shows a considerable homology with PACAP, also inhibited dose dependently the AVP-induced DNA synthesis in a cell cycle dependent manner. The maximum inhibition was also observed at the late G1 phase. The patterns of both the dose-dependent inhibitions were similar, and the inhibition by a combination of PACAP and VIP was not additive. PACAP stimulated dose dependently cAMP accumulation in aortic SMC. VIP also stimulated cAMP accumulation, and the accumulation by a combination of PACAP and VIP was not additive. Both PACAP and VIP had little effect on phosphoinositide hydrolysis in these cells. The suppression of the AVP-induced DNA synthesis by PACAP or VIP was enhanced by 3-isobutyl-1-methylxanthine, an inhibitor for phosphodiesterases. Dibutyryl cAMP, but not 8-bromo-cGMP, inhibited the AVP-induced DNA synthesis, and a combination of PACAP and dibutyryl cAMP was not additive. [Ac-Tyr1,D-Phe2]growth hormone-releasing factor, an antagonist for VIP receptor, reversed the inhibitory effect of PACAP on the AVP-induced DNA synthesis. These results suggest that PACAP has an antiproliferative effect on aortic SMC at the late G1 phase of the cell cycle through cAMP production, and that PACAP and VIP inhibit the AVP-induced DNA synthesis by a common mechanism.
We previously reported that pertussis toxin (PTX) had little effect on arginine vasopressin-induced formation of inositol trisphosphate (IP3) in rat aortic smooth muscle cells [Kondo et al.: Biochemical and Biophysical Research Communications 161:677-682, 1989]. In the present study, we investigated the mechanism of vasopressin-induced arachidonic acid release in rat aortic smooth muscle cells. Vasopressin stimulated both the release of arachidonic acid and the formation of IP3 dose dependently in the range between 10 pM and 1 microM. The effect of vasopressin on arachidonic acid release was more potent than that on the formation of IP3. Quinacrine, a phospholipase A2 inhibitor, significantly suppressed the vasopressin-induced arachidonic acid release but had little effect on the formation of inositol phosphates. NaF, a GTP-binding protein activator, mimicked vasopressin by stimulating the arachidonic acid release. The arachidonic acid release stimulated by a combination of vasopressin and NaF was not additive. PTX partially but significantly suppressed the vasopressin-induced arachidonic acid release. In the cell membranes, PTX catalyzed ADP-ribosylation of a protein with an M(r) of about 40,000. Pretreatment of membranes with 0.1 microM vasopressin in the presence of 2.5 mM MgCl2 and 100 microM GTP markedly attenuated this PTX-catalyzed ADP-ribosylation of the protein in a time-dependent manner. These results strongly suggest that PTX-sensitive GTP-binding protein is involved in the coupling of vasopressin receptor to phospholipase A2 in primary cultured rat aortic smooth muscle cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.