Unsupervised constituency parsing aims to learn a constituency parser from a training corpus without parse tree annotations. While many methods have been proposed to tackle the problem, including statistical and neural methods, their experimental results are often not directly comparable due to discrepancies in datasets, data preprocessing, lexicalization, and evaluation metrics. In this paper, we first examine experimental settings used in previous work and propose to standardize the settings for better comparability between methods. We then empirically compare several existing methods, including decade-old and newly proposed ones, under the standardized settings on English and Japanese, two languages with different branching tendencies. We find that recent models do not show a clear advantage over decade-old models in our experiments. We hope our work can provide new insights into existing methods and facilitate future empirical evaluation of unsupervised constituency parsing.
In this letter, we proposed a deep learning wavefront sensing approach for the Shack-Hartmann sensors (SHWFS) to predict the wavefront from sub-aperture images without centroid calculation directly. This method can accurately reconstruct high spatial frequency wavefronts with fewer sub-apertures, breaking the limitation of d/r0 ≈ 1 (d is the diameter of sub-apertures and r0 is the atmospheric coherent length) when using SHWFS to detect atmospheric turbulence. Also, we used transfer learning to accelerate the training process, reducing training time by 98.4% compared to deep learning-based methods. Numerical simulations were employed to validate our approach, and the mean residual wavefront root-mean-square (RMS) is 0.08λ. The proposed method provides a new direction to detect atmospheric turbulence using SHWFS.
Monte Carlo simulation has been used to investigate electron behaviour in a hollow-cathode discharge. The influences of a longitudinal magnetic field on electron distribution and ionization are included. The results show that the applied magnetic field increases electron density in the negative glow region, and decreases ionization in the discharge centre. On the other hand, the magnetic field remarkably increases the total number of ions in the discharge, especially the number in the neighbourhoods of the cathodes. Analyses of the results and proposals for use of magnetic field in hollow-cathode lasers have been given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.