Employing the lattice theory on majorization, the universal quantum uncertainty relation for any number of observables and general measurement is investigated. It is found that 1) the least bounds of the universal uncertainty relations can only be properly defined in the lattice theory; 2) contrary to variance and entropy, the metric induced by the majorization lattice implies an intrinsic structure of the quantum uncertainty; and 3) the lattice theory correlates the optimization of uncertainty relation with the entanglement transformation under local quantum operation and classical communication. Interestingly, the optimality of the universal uncertainty relation found can be mimicked by the Lorenz curve, initially introduced in economics to measure the wealth concentration degree of a society.
The uncertainty principle lies at the heart of quantum physics, and is widely thought of as a fundamental limit of the measurement precision of incompatible observables. Here it is shown that the traditional uncertainty relation in fact belongs to the leading order approximation of a generalized uncertainty relation. That is, the leading order linear dependence of observables gives the Heisenberg type of uncertainty relations, while higher order nonlinear dependence may reveal more different and interesting correlation properties. Applications of the generalized uncertainty relation and the high order nonlinear dependence between observables in quantum information science are also discussed.
The uncertainty relation is one of the key ingredients of quantum theory. Despite the great efforts devoted to this subject, most of the variance-based uncertainty relations are state-dependent and suffering from the triviality problem of zero lower bounds. Here we develop a method to get uncertainty relations with state-independent lower bounds. The method works by exploring the eigenvalues of a Hermitian matrix composed by Bloch vectors of incompatible observables and is applicable for both pure and mixed states and for arbitrary number of Ndimensional observables. The uncertainty relation for incompatible observables can be explained by geometric relations related to the parallel postulate and the inequalities in Horn's conjecture on Hermitian matrix sum. Practical entanglement criteria are also presented based on the derived uncertainty relations.
We present a practical scheme for the decomposition of a bipartite mixed state into a sum of direct products of local density matrices, using the technique developed in Li and Qiao (Sci. Rep. 8: 1442, 2018). In the scheme, the correlation matrix which characterizes the bipartite entanglement is first decomposed into two matrices composed of the Bloch vectors of local states. Then we show that the symmetries of Bloch vectors are consistent with that of the correlation matrix, and the magnitudes of the local Bloch vectors are lower bounded by the correlation matrix. Concrete examples for the separable decompositions of bipartite mixed states are presented for illustration.
Uncertainty principle is an inherent nature of quantum system that undermines the precise measurement of incompatible observables and hence the applications of quantum theory. Entanglement, another unique feature of quantum physics, may help to reduce the quantum uncertainty. In this paper, a practical method is proposed to reduce the one party measurement uncertainty by determining the measurement on the other party of an entangled bipartite system. In light of this method, a family of conditional majorization uncertainty relations in the presence of quantum memory is constructed, which is applicable to arbitrary number of observables. The new family of uncertainty relations implies sophisticated structures of quantum uncertainty and non‐locality, that are usually studied by using scalar measures. Applications to reduce the local uncertainty and to witness quantum non‐locality are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.