Our preliminary results demonstrate the feasibility of the CNN-based approach, and this scheme outperforms the NMC- and LREG-based methods. Advances in knowledge: This method reduces the registration time from ~1 h to ~1 min, which has promising prospects for clinical use. To the best of our knowledge, this study shows the first convolutional neural network-based registration method to be applied in abdominal images.
In this study, we proposed a model combing parallel imaging (PI) with generative adversarial network (GAN) architecture (PIC-GAN) for accelerated multi-channel magnetic resonance imaging (MRI) reconstruction. This model integrated data fidelity and regularization terms into the generator to benefit from multi-coils information and provide an “end-to-end” reconstruction. Besides, to better preserve image details during reconstruction, we combined the adversarial loss with pixel-wise loss in both image and frequency domains. The proposed PIC-GAN framework was evaluated on abdominal and knee MRI images using 2, 4 and 6-fold accelerations with different undersampling patterns. The performance of the PIC-GAN was compared to the sparsity-based parallel imaging (L1-ESPIRiT), the variational network (VN), and conventional GAN with single-channel images as input (zero-filled (ZF)-GAN). Experimental results show that our PIC-GAN can effectively reconstruct multi-channel MR images at a low noise level and improved structure similarity of the reconstructed images. PIC-GAN has yielded the lowest Normalized Mean Square Error (in ×10−5) (PIC-GAN: 0.58 ± 0.37, ZF-GAN: 1.93 ± 1.41, VN: 1.87 ± 1.28, L1-ESPIRiT: 2.49 ± 1.04 for abdominal MRI data and PIC-GAN: 0.80 ± 0.26, ZF-GAN: 0.93 ± 0.29, VN:1.18 ± 0.31, L1-ESPIRiT: 1.28 ± 0.24 for knee MRI data) and the highest Peak Signal to Noise Ratio (PIC-GAN: 34.43 ± 1.92, ZF-GAN: 31.45 ± 4.0, VN: 29.26 ± 2.98, L1-ESPIRiT: 25.40 ± 1.88 for abdominal MRI data and PIC-GAN: 34.10 ± 1.09, ZF-GAN: 31.47 ± 1.05, VN: 30.01 ± 1.01, L1-ESPIRiT: 28.01 ± 0.98 for knee MRI data) compared to ZF-GAN, VN and L1-ESPIRiT with an under-sampling factor of 6. The proposed PIC-GAN framework has shown superior reconstruction performance in terms of reducing aliasing artifacts and restoring tissue structures as compared to other conventional and state-of-the-art reconstruction methods.
The preliminary results demonstrate the feasibility of the proposed SCAE-based strategy for correcting the streaking artifacts of undersampled free-breathing 3D abdominal MRI with a negligible reconstruction time.
BackgroundFunctional brain networks of human have been revealed to have small-world properties by both analyzing electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) time series.Methods & ResultsIn our study, by using graph theoretical analysis, we attempted to investigate the changes of paralimbic-limbic cortex between wake and sleep states. Ten healthy young people were recruited to our experiment. Data from 2 subjects were excluded for the reason that they had not fallen asleep during the experiment. For each subject, blood oxygen level dependency (BOLD) images were acquired to analyze brain network, and peripheral pulse signals were obtained continuously to identify if the subject was in sleep periods. Results of fMRI showed that brain networks exhibited stronger small-world characteristics during sleep state as compared to wake state, which was in consistent with previous studies using EEG synchronization. Moreover, we observed that compared with wake state, paralimbic-limbic cortex had less connectivity with neocortical system and centrencephalic structure in sleep.ConclusionsIn conclusion, this is the first study, to our knowledge, has observed that small-world properties of brain functional networks altered when human sleeps without EEG synchronization. Moreover, we speculate that paralimbic-limbic cortex organization owns an efficient defense mechanism responsible for suppressing the external environment interference when humans sleep, which is consistent with the hypothesis that the paralimbic-limbic cortex may be functionally disconnected from brain regions which directly mediate their interactions with the external environment. Our findings also provide a reasonable explanation why stable sleep exhibits homeostasis which is far less susceptible to outside world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.