Microarray gene expression profiling is a powerful tool for generating molecular cancer classifications. However, elucidating biological insights from these large data sets has been challenging. Previously, we identified a gene expression-based classification of primary uveal melanomas that accurately predicts metastatic death. Class 1 tumors have a low risk and class 2 tumors a high risk for metastatic death. Here, we used genes that discriminate these tumor classes to identify biological correlates of the aggressive class 2 signature. A search for Gene Ontology categories enriched in our classdiscriminating gene list revealed a global down-regulation of neural crest and melanocyte-specific genes and an upregulation of epithelial genes in class 2 tumors. Correspondingly, class 2 tumors exhibited epithelial features, such as polygonal cell morphology, up-regulation of the epithelial adhesion molecule E-cadherin, colocalization of E-cadherin and B-catenin to the plasma membrane, and formation of cell-cell adhesions and acinar structures. One of our top class-discriminating genes was the helix-loop-helix inhibitor ID2, which was strongly down-regulated in class 2 tumors. The class 2 phenotype could be recapitulated by eliminating Id2 in cultured class 1 human uveal melanoma cells and in a mouse ocular melanoma model. Id2 seemed to suppress the epithelial-like class 2 phenotype by inhibiting an activator of the E-cadherin promoter. Consequently, Id2 loss triggered up-regulation of E-cadherin, which in turn promoted anchorage-independent cell growth, a likely antecedent to metastasis. These findings reveal new roles for Id2 and E-cadherin in uveal melanoma progression, and they identify potential targets for therapeutic intervention.
Purpose To determine the feasibility of performing intraocular surgeries in a heads-up position with low illuminance conditions by observing a display of the surgical field created by a three-dimensional imaging (3D) system. Methods Seventy-four eyes of 56 patients underwent cataract surgery (72 eyes) with the heads-up 3D surgery system; 60 eyes with cataract surgery alone, 7 eyes with combined cataract and glaucoma microdevice implant surgery, 5 eyes with combined cataract and vitrectomy surgery, and two eyes with vitrectomy surgery alone were studied. The illuminance from the surgical microscope was set to be dimmer (Leica M822F40 main light 2%; otto-flex 6%) than the usual setting to minimize the discomfort and glare for the patient. The surgeries were performed under topical anesthesia. The luminance of the images observed through the eyepieces of the operating microscope and the image of a 3D system created by a high-sensitivity sensor Exmor R 3CMOS HD camera (Sony MCC-1000MD) were measured. Results All surgeries were completed without any complications under the low illumination conditions. The surgical field on the display monitor was created by a 3D system using a high-sensitivity sensor camera and was observed in a heads-up position. The patients did not report any intolerable discomfort or glare during the surgery. Cataract surgeries were performed with a good view of the surgical field under the extremely low illumination from the surgical microscope. The high-sensitivity sensors and electronic amplifications of the image signals made the surgical field brighter and allowed the surgeon to perform the surgery confidently and safely. Conclusions Heads-up, 3D-assisted intraocular surgeries can be performed safely and efficiently with low illuminance of the surgical field. This trial is registered with UMIN000037838.
Although both rat retinal pericytes and endothelial cells contain AR, sorbitol accumulation and TUNEL staining primarily occur in pericytes and are inhibited by AR inhibitors.
ObjectiveMouse models possessing green fluorescent protein (GFP) and/or human aldose reductase (hAR) in vascular tissues have been established and crossed with naturally diabetic Akita mice to produce new diabetic mouse models.Research Design and MethodsColonies of transgenic C57BL mice expressing GFP (SMAA-GFP), hAR (SMAA-hAR) or both (SMAA-GFP-hAR) in vascular tissues expressing smooth muscle actin were established and crossbred with C57BL/6-Ins2Akita/J (AK) mice to produce naturally diabetic offspring AK-SMAA-GFP and AK-SMAA-GFP-hAR. Aldose reductase inhibitor AL1576 (ARI) was administered in chow. Retinal and lenticular sorbitol levels were determined by HPLC. Retinal functions were evaluated by electroretinography (ERGs). Growth factor and signaling changes were determined by Western Blots using commercially available antibodies. Retinal vasculatures were isolated from the neural retina by enzymatic digestion. Flat mounts were stained with PAS-hematoxylin and analyzed.ResultsAkita transgenics developed DM by 8 weeks of age with blood glucose levels higher in males than females. Sorbitol levels were higher in neural retinas of AK-SMAA-GFP-hAR compared to AK-SMAA-GFP mice. AK-SMAA-GFP-hAR mice also had higher VEGF levels and reduced ERG scotopic b-wave function, both of which were normalized by AL1576. AK-SMAA-GFP-hAR mice showed induction of the retinal growth factors bFGF, IGF-1, and TGFβ, as well as signaling changes in P-Akt, P-SAPK/JNK and P-44/42 MAPK that were also reduced by ARI treatment. Quantitative analysis of flat mounts in 18 week AK-SMAA-GFP-hAR mice revealed increased loss of nuclei/capillary length and a significant increase in the percentage of acellular capillaries present which was not seen in AK-SMAA-GFP-hAR treated with ARI.Conclusions/SignificanceThese new mouse models of early onset diabetes may be valuable tools for assessing both the role of hyperglycemia and AR in the development of retinal lesions associated with diabetic retinopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.