The ontogeny of pepsinogen C-producing cells in rat fundic glands was studied by means of light and electron microscopy using an antiserum raised against a synthetic peptide based on rat pepsinogen C. To confirm the immunocytochemistry results, the expression of rat pepsinogen C messenger RNA (mRNA) in the fundic gland was also examined by in situ hybridization using a digoxigenin-labeled RNA probe. In adult rats, pepsinogen C was produced by chief cells, mucous neck cells, and intermediate mucopeptic cells. Pepsinogen C-producing cells appeared in embryos as early as 18.5 days' gestation. The development of these cells could be classified into four stages: (1) 18.5 days' gestation to 0.5 days after birth; (2) 0.5 days to 2 weeks after birth; (3) 3-4 weeks after birth; (4) 4-8 weeks after birth. In embryos and young animals, pepsinogen C-producing cells were mucopeptic cells. By 4 weeks after birth, mucous neck cells could be distinguished morphologically. The maturation stages of the chief cells could be traced by electron microscopy along the longitudinal axis of the rat fundic gland by double-staining with anti-pepsinogen C antibody and periodic acid-thiocarbohydrazide-silver proteinate. Positive reactions for pepsinogen C and pepsinogen C mRNA expression were detected in mucous neck cells. Therefore, we conclude that mucous neck cells are precursor cells of chief cells. Mucous neck cells, intermediate cells, and chief cells are in the same differentiating cell lineage.
Eosinophil peroxidase (EPO) is one of the granule enzymes in the eosinophil-specific granules and is distinct from myeloperoxidase. Here we report that peroxidase activity was absent in eosinophils of New Zealand White (NZW) mice. When NZW, New Zealand Black and their F, mice were treated with cyclophosphamide followed by Toxocara canis infection, the kinetic changes in the number of eosinophils in peripheral blood, determined by counting in Hinkelman’s diluting fluid, were almost comparable among the three strains. However, when their blood films were stained for peroxidase reaction, eosinophils of NZW mice, but not of the other strains, lacked EPO activity, though their specific granules were stained by eosin Y Sudan black staining for phospholipid was also negative in eosinophils of NZW mice. EPO deficiency in NZW eosinophils was further confirmed by electron-microscopic observations and by measuring EPO activity in the extracts of eosinophil-rich cell suspensions. These results indicate that NZW eosinophils share most of the features with human EPO-deficient eosinophils, suggesting that the NZW mouse is a murine counterpart of human EPO deficiency.
Bone marrow embedding in the hydrophilic resin, Lowicryl K4M, followed by cationic colloidal gold (CCG, pH 1.0) staining was used to study the sulfated glycosaminoglycans (GAGs) and their sites of sulfation ultrastructurally in various maturational stages of both basophil granulocytes and basophil granules in the guinea pig. CCG at pH 1.0 is specific for sulfated GAG staining. Basophil granulocytes and granules reacted positively to CCG with a variety of staining according to the stage of maturation. The formation of basophil granules takes place throughout the myelocyte stage. Early basophil myelocytes contain a large Golgi apparatus with active granulogenesis, while late myelocytes contain a small and less active Golgi apparatus as judged by CCG staining. All the immature granules and some of the granules with characteristic ultrastructure stained positively. However, some of the mature granules had lost their affinity for CCG upon maturation. Interestingly, strongly positive CCG staining was also observed in the trans to transmost Golgi apparatus. This indicates that sulfation of GAGs occurs in the trans to transmost Golgi apparatus in all maturational stages of basophil granulocytes. Treatment with chondroitinase ABC or heparinase I abolished the majority of CCG staining.
SUMMARYWe examined the presence of sialyl glycoconjugates in specific granules from murine bone marrow eosinophils. Lectin cytochemistry using Maackia amurensis lectin II (MAL II) specific for sialyl ␣-2,3 galactose residues demonstrated positive labeling in both immature and mature specific granules. Pretreatment with Clostridium neuraminidase or keratanase II eliminated the positive labeling of MAL II in the specific granules. High iron diamine-thiocarbohydrazide-silver proteinate physical development (HID-TCH-SP-PD) staining, which is specific for sulfated glycoconjugates, also positively labeled immature specific granules lacking crystalloids but not mature granules with crystalloids. Pretreatment with a combination of chondroitinase ABC and keratanase, or a combination of chondroitinase ABC and keratanase II, eliminated the positive labeling obtained with HID-TCH-SP-PD. These results indicate that the sialyl residues detected by MAL II are expressed as terminal sugar residues of keratan sulfate proteoglycan, which appears to be of the corneal type in view of its sensitivity to keratanase and keratanase II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.