Aim: The present study aimed to explore the antitumor effect and action mechanism of cucurbitacin B (CuB) on human T-cell leukemia Jurkat cells. Methods: Cell proliferation was measured by the MTS assay. Cell cycle distribution, mitochondrial membrane potential and annexin V staining were analyzed using flow cytometry. Western blotting was used to determine the levels of apoptosis- and autophagy-related proteins. Results: CuB inhibited the proliferation of Jurkat cells in a dose-dependent manner and induced G2/M phase arrest as well as formation of tetraploid cells. Accompanied with these effects, the actin dynamics was disrupted, and cofilin, a key regulator of actin dynamics, was persistently activated (dephosphorylated). Although CuB induced around 10% cells undergoing apoptosis, most of the cells were alive after CuB treatment for 24 h. Induction of autophagy was also evident by accumulation of LC3-II. CuB-induced autophagy seemed to be a prosurvival response, since suppression of CuB-induced autophagy significantly increased the activation of caspase-3. Conclusion: Our results demonstrated that CuB exhibited antitumor activity in Jurkat cells through induction of cell cycle arrest and apoptosis which was at least partly due to the disruption of actin dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.