We propose an unsupervised real-time dense depth completion from a sparse depth map guided by a single image. Our method generates a smooth depth map while preserving discontinuity between different objects. Our key idea is a Binary Anisotropic Diffusion Tensor (B-ADT) which can completely eliminate smoothness constraint at intended positions and directions by applying it to variational regularization. We also propose an Image-guided Nearest Neighbor Search (IGNNS) to derive a piecewise constant depth map which is used for B-ADT derivation and in the data term of the variational energy. Our experiments show that our method can outperform previous unsupervised and semi-supervised depth completion methods in terms of accuracy. Moreover, since our resulting depth map preserves the discontinuity between objects, the result can be converted to a visually plausible point cloud. This is remarkable since previous methods generate unnatural surface-like artifacts between discontinuous objects.
Estimating the nutritional value of food based on image recognition is important to health support services employing mobile devices. The estimation accuracy can be improved by recognizing regions of food objects and ingredients contained in those regions. In this paper, we propose a method that estimates nutritional information based on segmentation and labeling of food regions of an image by adopting a semantic segmentation method, in which we consider recipes as corresponding sets of food images and ingredient labels. Any food object or ingredient in a test food image can be annotated as long as the ingredient is contained in a training food image, even if the menu containing the food image appears for the first time. Experimental results show that better estimation is achieved through regression analysis using ingredient labels associated with the segmented regions than when using the local feature of pixels as the predictor variable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.