A numerical study was carried out to investigate the effects of methane (CH4), ethane (C2H6), propane (C3H8), butane (C4H10), and dimethyl ether (DME) on the combustion and emission characteristics of a four-stroke gas-diesel dual-fuel (DF) marine engine at full load. Three-dimensional simulations of the combustion process and emission formation inside the engine cylinder in the diesel and DF modes were performed using the AVL FIRE R2018a simulation software to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results agreed well with the measured values reported in the engine shop test technical data. The simulation results showed reductions in the in-cylinder peak pressure and temperatures, as well as the emission formations, in the DF modes in comparison to the diesel mode. The DF mode could significantly reduce nitric oxide (NO) emissions (up to 96.225%) of DME compared to the diesel mode. Meanwhile, C3H8 and CH4 fuels effectively reduced the soot (up to 82.78%) and carbon dioxide (CO2) emissions (by 21.33%), respectively, compared to the diesel mode. However, the results also showed longer ignition delay times of the combustion processes when the engine operated in the DF mode, particularly in the DME-diesel mode. The combustion and emission characteristics of the engine were also analyzed when varying the injection timing; the results showed that applying the injection timing adjustment method could further address NO emission problems but led to a decrease in the engine power. Therefore, it is necessary to consider the benefits and disadvantages of adopting the injection timing adjustment strategy to address certain engine emission problems. This study successfully analyzed the benefits of using various gas fuels as alternative fuels and the injection timing adjustment method in DF marine engines to meet the International Maritime Organization (IMO) emission regulations without the use of any emission after-treatment devices.
Anode active materials for lithium ion batteries (LIBs) were produced by using waste soot generated after combustion in a plant using petroleum coke as fuel. The soot collected from the boilers in the plant was graphitized through annealing, and this annealed soot was applied to anode active materials. After annealing at 2700 °C, the soot was converted into highly crystalline graphite with ring shapes approximately 100 nm in diameter. The lithium ion coin cells produced using graphitized soot showed high discharge capacity and excellent life cycle with a reversible capacity of 250 mAh/g even after 300 cycles at a rate of 1 C. This study describes a new possibility of using environmentally harmful combustion wastes of petroleum coke as a low-price anode material for LIBs by converting them into a graphite multilayer structure with a unique ring shape through annealing.
This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.
A numerical study was carried out to investigate the effects of injector spray angle (SA) and injection position (IP) on the combustion and emission characteristics of a two-stroke ME-GI marine engine at full load. Three-dimensional (3D) simulations of the combustion process and emission formations inside the cylinder of the engine operating in the diesel and DF modes were performed using the ANSYS Fluent simulation software to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were compared and showed good agreement with the experimental results reported in the engine’s shop test technical data. The simulation results showed that the IP of 0.02 m with an SA of 40 degrees helps to enhance the engine performance; however, if the main target is reducing engine exhaust gas emissions, an IP of 0.01 m is highly recommended to be used. At this IP, the specific SA of 40, 45, or 50 degrees that should be used will depend on which emissions (NO, soot, CO2, etc.) need to be reduced. This study successfully investigated the effects of injector SA and IP on the combustion and emission characteristics of the researched engine and would be a good reference for engine design and operating engineers.
Small vessels operating in coastal waters are susceptible to propeller failure because of the entanglement of marine debris. Secondary accidents such as the injury of divers may also occur when removing entangling material. Rope cutters are devices used to prevent marine litter from entangling the propeller of small ships. However, installing rope cutters on propeller shafts might affect the working of the propeller. In this study, three-dimensional simulations were performed to investigate the effect of a rope cutter on flow characteristics behind the propeller. The Computational fluid dynamics (CFD) models were validated by particle image velocimetry (PIV) experiments performed in a rope cutter performance testing tank. The study results showed that the installation of a rope cutter on the propeller shaft led to an insignificant reduction in water flow velocity magnitude behind the propeller. Additionally, the effects of the rope cutter on the reductions of thrust (0.87%) and torque (0.76%) of the propeller were also negligible. However, it is very interesting to note that rope cutter installation resulted in a lower vortex formation, leading to a significant reduction in the turbulence intensity behind the propeller by 27.12%, 37.50%, and 47.29% at 100, 150, and 200 rpm propeller speed, respectively. Based on the study results, it can be concluded that rope cutters help to reduce propeller entanglements without significantly affecting the propeller’s working.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.