Symbiont-mediated nutritional mutualisms can contribute to the host fitness of insects, especially for those that feed exclusively on nutritionally unbalanced diets. Here, we elucidate the importance of B group vitamins in the association of endosymbiotic bacteria Wolbachia with two plant-sap feeding insects, the small brown planthopper, Laodelphax striatellus (Fallén), and the brown planthopper, Nilaparvata lugens (Stål). Infected planthoppers of both species laid more eggs than uninfected planthoppers, while the experimental transfer of Wolbachia into uninfected lines of one planthopper species rescued this fecundity deficit. The genomic analysis showed that Wolbachia strains from the two planthopper species encoded complete biosynthesis operons for biotin and riboflavin, while a metabolic analysis revealed that Wolbachia-infected planthoppers of both species had higher titers of biotin and riboflavin. Furthermore, experimental supplementation of food with a mixture of biotin and riboflavin recovered the fecundity deficit of Wolbachia-uninfected planthoppers. In addition, comparative genomic analysis suggested that the riboflavin synthesis genes are conserved among Wolbachia supergroups. Biotin operons are rare in Wolbachia, and those described share a recent ancestor that may have been horizontally transferred from Cardinium bacteria. Our research demonstrates a type of mutualism that involves a facultative interaction between Wolbachia and plant-sap feeding insects involving vitamin Bs.
Wolbachia in host germ lines are essential for their vertical transmission to the next generation. It is unclear how the regulation of host oocyte development influences Wolbachia location and the mechanistic basis of transmission. Here, we investigated whether vitellogenin influences Wolbachia transmission in Laodelphax striatellus. Wolbachia increased in density and spread from the anterior tropharium to developing oocytes as ovaries developed. Microscopic observations indicated that Wolbachia invaded ovarioles from the tropharium of its anterior side rather than the pedicel side. Wolbachia utilized the host Vg transovarial transportation system to enter the ovaries and were transmitted from the tropharium into the developing oocytes through nutritive cords. These observations were supported by knocking down the Vg transcript, in which low Wolbachia titers were detected in ovaries and fewer Wolbachia were transmitted into oocytes. Our findings establish a link between the Vg-related mode of transovarial transmission and efficient maternal transmission of Wolbachia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.