We encountered a rare case of spontaneous rupture of the omental artery. A 25-year-old man without any episode of abdominal trauma or bleeding disorders came to the emergency unit with left upper abdominal pain. Hematoma with extravasation of the greater omentum and a hemoperitoneum was confirmed on abdominal contrast-enhanced computed tomography. Bleeding from the omental artery was suspected based on these findings. Transcatheter arterial embolization was successfully performed after extravasation of the omental artery, which arises from the left gastroepiploic artery, was confirmed on arteriography. Partial ometectomy was performed 10 days after transcatheter arterial embolization, revealing that the hematoma measured 10 cm in diameter in the greater omentum. Pathological examination showed rupture of the branch of an omental artery without abnormal findings, such as an aneurysm or neoplasm. Thus, we diagnosed him with spontaneous rupture of the omental artery. The patient recovered and was discharged from the hospital 10 days after the surgery, with a favorable postoperative course.
IntroductionThe aim of this study was to assess the brain core temperature of patients with mild traumatic brain injury (mTBI) using a noninvasive temperature measurement technique based on the diffusion coefficient of the cerebrospinal fluid.MethodsThis retrospective study used the data collected from April 2008 to June 2011. The patient group comprised 20 patients with a Glasgow Coma Scale score of 14 or 15 who underwent magnetic resonance imaging within 30 days after head trauma. The normal control group comprised 14 subjects who volunteered for a brain checkup (known in Japan as “brain dock”). We compared lateral ventricular (LV) temperature between patient and control groups. Follow-up studies were performed for four patients.ResultsLV temperature measurements were successfully performed for both patients and controls. Mean (±standard deviation) measured LV temperature was 36.9 ± 1.5 °C in patients, 38.7 ± 1.8 °C in follow-ups, and 37.9 ± 1.2 °C in controls, showing a significant difference between patients and controls (P = 0.017). However, no significant difference was evident between patients and follow-ups (P = 0.595) or between follow-ups and controls (P = 0.465).ConclusionsA reduction in brain core temperature was observed in patients with mTBI, possibly due to a global decrease in metabolism.
Background Simultaneous multi-slice (SMS) imaging is starting to be used in clinical situation, although evidence of clinical feasibility is scanty. Purpose To prospectively assess the clinical feasibility of SMS diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) with blipped-controlled aliasing in parallel imaging for brain lesions. Material and Methods The institutional review board approved this study. This study included 156 hyperintense lesions on DWI from 32 patients. A slice acceleration factor of 2 was applied for SMS scans, which allowed shortening of the scan time by 41.3%. The signal-to-noise ratio (SNR) was calculated for brain tissue of a selected slice. The contrast-to-noise ratio (CNR), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated in 36 hyperintense lesions with a diameter of three pixels or more. Visual assessment was performed for all 156 lesions. Tractography of the corticospinal tract of 29 patients was evaluated. The number of tracts and averaged tract length were used for quantitative analysis, and visual assessment was evaluated by grading. Results The SMS scan showed no bias and acceptable 95% limits of agreement compared to conventional scans in SNR, CNR, and ADC on Bland-Altman analyses. Only FA of the lesions was higher in the SMS scan by 9% ( P = 0.016), whereas FA of the surrounding tissues was similar. Quantitative analysis of tractography showed similar values. Visual assessment of DWI hyperintense lesions and tractography also resulted in comparable evaluation. Conclusion SMS imaging was clinically feasible for imaging quality and quantitative values compared with conventional DWI and DTI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.