Kun-Tsan Lee and Chin-Horng Su contributed equally to this work.
Rheumatoid arthritis (RA) is a prototypic inflammatory disease, characterized by the infiltration of proinflammatory cytokines into the joint synovium and the migration of mononuclear cells into inflammatory sites. The adipokine nesfatin-1 is linked to inflammatory events in various diseases, although its role in RA pathology is uncertain. Analysis of the Gene Expression Omnibus GSE55235 dataset revealed high levels of expression of the adipokine nesfatin-1 in human RA synovial tissue. Similarly, our human synovial tissue samples exhibited increasing levels of nesfatin-1 expression and Ccl2 mRNA expression. Nesfatin-1-induced stimulation of CCL2 expression and monocyte migration involved the MEK/ERK, p38, and NF-κB signaling pathways. Notably, nesfatin-1-induced increases in CCL2 expression favored M1 macrophage polarization, which increased the expression of proinflammatory cytokines IL-1β, IL-6, and TNF-α. Finally, nesfatin-1 shRNA ameliorated the severity of inflammatory disease and reduced levels of M1 macrophage expression in CIA mice. Our studies confirm that nesfatin-1 appears to be worth targeting in RA treatment.
Osteoarthritis (OA) is a painful, progressive chronic inflammatory disease marked by cartilage destruction. Certain synovial inflammatory cytokines, such as IL-1β and TNF-α, promote OA inflammation and pain. Lactobacillus spp. is a well-known probiotic with anti-inflammatory, analgesic, antioxidant, and antiosteoporotic properties. This study evaluated the therapeutic effects of a live L. plantarum strain (GKD7) in the anterior cruciate ligament transection (ACLT)-induced OA rat model. The results show that oral administration of live L. plantarum GKD7 improved weight-bearing asymmetry after ACLT surgery. Moreover, micro-computed tomography images and histopathological analysis show that oral live L. plantarum GKD7 improved subchondral bone architecture, protected articular cartilage against ACLT-induced damage, and reduced synovial inflammation. L. plantarum GKD7 also reduced IL-1β and TNF-α production in OA cartilage and synovium. Thus, orally administered live L. plantarum GKD7 appears to effectively slow the progression of OA.
Recent literature highlights the importance of microRNAs (miRNAs) functioning as diagnostic biomarkers and therapeutic agents in osteoarthritis (OA) and regulators of gene expression. In OA pathogenesis, cell adhesion molecules (CAMs), especially vascular cell adhesion protein 1 (VCAM-1), recruit monocyte infiltration to inflamed synovial tissues and thus accelerate OA progression. Up until now, little has been known about the regulatory mechanisms between miRNAs, long non-coding RNAs (lncRNAs) and VCAM-1 during OA progression. The evidence in this article emphasizes that the functional feature of miR-150-5p is an interaction with the lncRNA X-inactive specific transcript (XIST), which regulates VCAM-1-dependent monocyte adherence in OA synovial fibroblasts (OASFs). Levels of VCAM-1, CD11b (a monocyte marker) and XIST expression were higher in human synovial tissue samples and OASFs, while levels of miR-150-5p were lower in human OA synovial tissue compared with non-OA specimens. XIST enhanced VCAM-1-dependent monocyte adherence to OASFs. Upregulation of miR-150-5p inhibited the effects of XIST upon monocyte adherence. Administration of miR-150-5p effectively ameliorated OA severity in anterior cruciate ligament transection (ACLT) rats. The interaction of miR-150-5p and XIST regulated VCAM-1-dependent monocyte adherence and attenuated OA progression. Our findings suggest that miR-150-5p is a promising small-molecule therapeutic strategy for OA.
Cataracts, a prevalent age-related eye condition, pose a significant global health concern, with rising rates due to an aging population and increased digital device usage. In Taiwan, cataract prevalence is particularly high, reaching up to 90% among individuals aged 70 and above. The lens of the eye absorbs short-wave light, which can lead to oxidative stress in lens epithelial cells and contribute to cataract formation. Exposure to ultraviolet (UV) light further exacerbates the risk of cataracts by generating reactive oxygen species. Heat-shock proteins (HSPs), involved in protein maintenance and repair, have been linked to cataract development. Cordyceps cicadae (C. cicadae), a traditional Chinese medicine, has a long history of use and is known for its pharmacological effects. N6-(2-hydroxyethyl) adenosine (HEA), a bioactive compound found in C. cicadae, exhibits anti-inflammatory, immunomodulatory, and neuroprotective properties. Previous studies have shown that C. cicadae mycelial extracts improve dry eye disease and reduce intraocular pressure in animal models. Additionally, C. cicadae possesses antioxidant properties, which are beneficial for combating cataract formation. In this study, we aim to evaluate the preventive efficacy of C. cicadae mycelial extracts in UV-induced cataract development. By investigating the ameliorative effects of C. cicadae on eye diseases and its potential role in ocular health improvement, we hope to uncover new options for cataract prevention and provide insights into the mechanisms of action. The findings of this research could provide a novel approach for nutritional supplements targeting cataract prevention, offering potential benefits in the field of ocular health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.