Dye tracers were chosen, based on net charge, chemical structure, and reactive groups, to test for the existence of and to provide novel insight into channel selectivities of junctional pathways connecting smooth muscle and endothelial cells of the arteriolar wall. Dyes were injected into individual smooth muscle or endothelial cells of hamster cheek pouch arterioles using microiontophoresis. Coupling, independent of tracer net charge, was seen both within and between cell layers. Endothelial cells were well coupled by all of the tested dyes. Smooth muscle junctions appeared less effective in dye transfer than endothelial junctions. Lucifer yellow was confirmed to be a poor tracer of smooth muscle gap junctions, and remarkably this dye and other related sulfate-containing molecules interfered with dye movement through smooth muscle but not endothelial junctions. Myoendothelial junctions showed a striking polarity of dye movement, with dye transfer from endothelial to smooth muscle cells but little or no transfer in the reverse direction. Because the dyes have size and charge characteristics similar to those of known cellular second messengers, these findings have important implications for cell-cell signaling in the vessel wall.
Conducted vasomotor responses are viewed as one mechanism that functionally integrates the microvasculature. It is hypothesized that the conducted vasomotor response is the result of an electrical current and its passive electrotonic spread along the length of a microvessel. We tested this hypothesis in isolated, unpressurized arterioles from the hamster cheek pouch using conventional intracellular membrane potential recording techniques. The mean resting membrane potential (RMP) was -67 mV. KCl and phenylephrine (PE) pulse-stimulation applied through micropipettes could both induce transient depolarizations and vasoconstrictions at the site of stimulation (local) and at conducted (560 microns) sites. It was noted, however, that the conducted vasomotor response could not be induced until the conducted electrical response exceeded a threshold of -45 mV for a minimum amount of time. The relationship between the amplitude of constriction and the amplitude-time area of depolarization above -45 mV was the same for local and conducted KCl and for conducted PE but was significantly different from that for local PE. Nifedipine greatly reduced the local and conducted mechanical but not electrical responses. Our results indicate that the conducted vasomotor responses are the result of the generation and subsequent conduction of electrical signals along the vessel but that the corresponding mechanical response occurs only when the electrical response exceeds a threshold level.
We have previously shown that conducted vasomotor responses follow patterns that are consistent with a passive spread of electrical current along the length of the arterioles [(Xia and Duling, Am. J. Physiol. 269 (Heart Circ. Physiol. 38): H2022-H2030, 1995]. In this study, we define the cells through which the current flows. Isolated arterioles of hamster cheek pouch were used. The mean resting membrane potential (RMP) for randomly sampled arteriolar cells was -67 mV. When cell types were identified by dye injection, the RMPs were -68 and -67 mV for smooth muscle (SM) and endothelium (EC), respectively. Pulses of KCl induced transient, monophasic depolarizations at the site of stimulation (local), which were conducted decrementally along the length of the arteriole over several millimeters. During electrical conduction, three patterns of responses could be observed, but identical patterns of the conducted electrical responses were always observed in SM and EC. Phenylephrine stimulation also caused transient local and conducted depolarizations in both SM and EC. As with KCl stimuli, shapes of conducted electrical responses were identical in records made in both cell types. The results suggest that SM and EC are electrically coupled both homocellularly and heterocellularly.
ACh and KCl stimulate vasomotor responses that spread rapidly and bidirectionally along arteriole walls, most likely via spread of electric current or Ca2+ through gap junctions. We examined these possibilities with isolated, cannulated, and perfused hamster cheek pouch arterioles (50- to 80-microm resting diameter). After intraluminal loading of 2 microM fluo 3 to measure Ca2+ or 1 microM di-8-ANEPPS to measure membrane potential, photometric techniques were used to selectively measure changes in intracellular Ca2+ concentration ([Ca2+]i) or membrane potential in endothelial cells. Activation of the endothelium by micropipette application of ACh (10-4 M, 1.0-s pulse) to a short segment of arteriole (100-200 microm) increased endothelial cell [Ca2+]i and caused hyperpolarization at the site of stimulation. This response was followed rapidly by vasodilation of the entire arteriole ( approximately 2-mm length). Change in membrane potential always preceded dilation, both at the site of stimulation and at distant sites along the arteriole. In contrast, an increase in endothelial cell [Ca2+]i was observed only at the application site. Micropipette application of KCl, which can depolarize both smooth muscle and endothelial cells (250 mM, 2.5-s pulse), also caused a rapid, spreading response consisting of depolarization followed by vasoconstriction. With KCl stimulation, in addition to changes in membrane potential, increases in endothelial cell [Ca2+]i were observed at distant sites not directly exposed to KCl. The rapid longitudinal spread of both hyperpolarizing and depolarizing responses support electrical coupling as the mode of signal transmission along the arteriolar length. In addition, the relatively short distance between heterologous cell types enables the superimposed radial Ca2+ signaling between smooth muscle and endothelial cells to modulate vasomotor responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.