Tumor microenvironment (TME) promotes immune suppression through recruiting and expanding suppressive immune cells such as regulatory T cells (Tregs) to facilitate cancer progression. In this study, we identify a novel CD39 C gdTreg in human colorectal cancer (CRC). CD39 C gdTregs are the predominant regulatory T cells and have more potent immunosuppressive activity than CD4 C or CD8 C Tregs via the adenosine-mediated pathway but independent of TGF-b or IL-10. They also secrete cytokines including IL-17A and GM-CSF, which may chemoattract myeloid-derived suppressive cells (MDSCs), thus establishing an immunosuppressive network. We further demonstrate that tumor-derived TGF-b1 induces CD39 C gdT cells from paired normal colon tissues to produce more adenosine and become potent immunosuppressive T cells. Moreover, CD39 C gdTreg infiltration is positively correlated with TNM stage and other unfavorable clinicopathological features, implicating that CD39 C gdTregs are one of the key players in establishment of immunosuppressive TME in human CRC that may be critical for tumor immunotherapy.
BackgroundAcute respiratory infections (ARI) are the major worldwide health problem associated with high morbidity and mortality rates. Human adenovirus (HAdV) is one of the most common pathogens associated with viral ARI, and thus calls for specific diagnosis and better understanding of the epidemiology and clinical characteristics.MethodsTotal 4,130 children with ARI requiring hospitalization from 2012 to 2013 were retrospectively studied. Throat swab specimens were collected from each patient. Fluorescence Quantitative PCR was performed to detect adenovirus as well as other common ARI-related pathogens. The seven HAdV hypervariable regions (HVRs) of the hexon gene from fifty-seven HAdVs-positive samples collected in the seasonal peaks were sequenced. Phylogenetic analysis of HVRs was also conducted to confirm the molecular types and genetic variation. In addition, epidemiological features and co-infection with other human respiratory pathogens were investigated and analyzed.ResultsOf 4,130 hospitalized pediatric patients tested, the positive rates of respiratory syncytial virus (RSV), Mycoplasma pneumoniae (MP), and HAdV were 13.7%, 13.2%, and 12.0%, respectively. The HAdV positive patients accounted for 7.9%, 17.2%, 17.5% and 10.7% in age groups <1, 1–3, 3–6 and 6–14 years, respectively. Eighty-four HAdV positive children were co-infected with other respiratory pathogens (84/495, 17.0%). The most common co-infection pathogens with HAdV were MP (57.1%) and Human Bocavirus (HBoV) (16.7%). The majority of HAdV infected patients were totally recovered (96.9%, 480/495); However, four (0.8%) patients, who were previously healthy and at the age of 2 years or younger died of pneumonia. Seasonal peaks of HAdV infection occurred in the summer season of 2012 and 2013; the predominant HAdV type was HAdV-3 (70%), followed by HAdV-7 (28%). These epidemiological features were different from those in Northern China. The HAdV-55 was identified and reported for the first time in Guangzhou metropolitan area. Phylogenetic analysis indicated that all the HVR sequences of the hexon gene of HAdV-3 and -7 strains have high similarity within their individual types, and these strains were also similar to those circulating in China currently, indicating the conservation of hexon genes of both HAdV-3 and HAdV-7.ConclusionsKnowledge of the epidemiological features and molecular types of HAdV, a major pathogen of pediatric ARI, as well as other co-infected respiratory pathogens circulating in Guangzhou, southern China, is vital to predict and prevent future disease outbreaks in children. This study will certainly facilitate HAdV vaccine development and treatment of HAdV infections in children.
The aim of the present study was to develop a lipid emulsion loaded with a paclitaxel-cholesterol complex (PTX-CH Emul) in order to improve the safety and efficacy of paclitaxel (PTX) and evaluate its antitumor activity against commercially available formulation Taxol®. PTX-CH Emul resembling a low density lipoprotein lipid structure, exhibited an ideal particle size, high drug loading capability, high drug encapsulation efficiency and excellent stability. PTX-CH Emul showed superior in vitro anticancer efficacy against triple-negative MDA-MB-231 breast cancer cells when compared with a paclitaxel emulsion (PTX Emul) and Taxol. The IC70 value of PTX-CH Emul was almost 1.5- and 2.4-fold lower than that of PTX Emul and Taxol, respectively. Compared with PTX Emul and Taxol, PTX-CH Emul exhibited stronger and more rapid inhibitory effects on 3D tumor spheroids of MDA-MB-231 cells. Additionally, in vivo tumor-targeting study showed that PTX-CH Emul had higher specificity and efficiency in intratumoral accumulation as compared to PTX Emul. Finally, the maximum tolerated dose (MTD) of PTX-CH Emul was 2.25‑fold higher than that of Taxol, suggesting that PTX-CH Emul exhibited better safety profiles in vivo than Taxol. At the MTDs, PTX-CH Emul exhibited superior antitumor efficacy in nude mice bearing MDA-MB-231 xenografts in comparison to Taxol. Therefore, PTX-CH Emul as reported here showed high potential as a drug carrier for PTX in clinical applications involving the targeting of triple-negative breast cancer.
Background: Tumor-associated macrophages (TAMs) are critical in tumor progression and metastasis. Selective targeting of TAMs holds great potential to ameliorate the immunosuppressive tumor microenvironment and enhance the efficacy of antitumor therapy. Various liposomes have been developed to target TAMs via cell-specific surface receptors either to deplete or re-educate TAMs. Since immuno-stimulation often initiates with the interaction of nanocarriers with the innate immunity cells such as macrophages, the intrinsic impact of drug-free liposomes on macrophage activation and polarization via cell interaction is one of the most critical issues in nanomedicine for promoting effective immunotherapy. Methods: In this study, conventional bare liposomes, PEGylated liposomes, and mannosylated liposomes were developed and the cytotoxicity, cellular internalization, immunostimulatory activity, targeting efficiency, antitumor efficacy, and mechanism were evaluated in vitro and in vivo. Results: All liposomes displayed an ideal particle size, good biocompatibility, and controlled release behavior. Mannosylated liposomes exhibited superior in vitro cellular internalization and tumor spheroid penetration with the aid of the mannose receptor-mediated TAMs-targeting effects. In particular, mannosylated liposomes promoted the polarization of both M0 and M2 to the M1 phenotype by enhancing the expression ratio of CD86/CD206 in vitro. Of note, mannosylated liposomes could inhibit G422 glioma tumor growth, which may be attributed to the polarization of TAMs, as evidenced by the reduction in expression level of the TAMs surface marker. Conclusion: These results indicate the potential value of mannosylated liposomes in the design of a rational delivery system to enhance the antitumor immune efficacy of immunomodulators by inducing a shift from the M2 to the M1 phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.