Clinical observations indicate that the paramedian region of the thalamus is a critical node for controlling wakefulness. However, the specific nucleus and neural circuitry for this function remain unknown. Using in vivo fiber photometry or multichannel electrophysiological recordings in mice, we found that glutamatergic neurons of the paraventricular thalamus (PVT) exhibited high activities during wakefulness. Suppression of PVT neuronal activity caused a reduction in wakefulness, whereas activation of PVT neurons induced a transition from sleep to wakefulness and an acceleration of emergence from general anesthesia. Moreover, our findings indicate that the PVT–nucleus accumbens projections and hypocretin neurons in the lateral hypothalamus to PVT glutamatergic neurons’ projections are the effector pathways for wakefulness control. These results demonstrate that the PVT is a key wakefulness-controlling nucleus in the thalamus.
Lymph node metastasis is the major concern that causes death in colorectal cancers. However, biomarkers for cancer metastasis are still lacking. In this study, we applied an LC-MS/MS-based label-free quantitative proteomics approach to compare the differential secretome of a primary cell line SW480 and its lymph node metastatic cell line SW620 from the same colorectal cancer patient. We identified a total of 910 proteins from the conditioned media and 145 differential proteins between SW480 and SW620 (>1.5-fold change). The differential expression pattern of 6 candidate proteins was validated by Western blot analysis. Among them, trefoil factor 3 and growth/differentiation factor 15, two up-regulated proteins in SW620, were further analyzed in a large cohort of clinical tissue and serum samples. Sandwich ELISA assay showed that the serum levels of both proteins were significantly higher in lymph node metastatic colorectal cancers. Receiver operating characteristic curve analysis confirmed that serum trefoil factor 3 and growth/differentiation factor 15 could provide a discriminatory diagnostic test for predicting colorectal cancer metastasis. Immunohistochemical analysis also showed that the overexpression of trefoil factor 3 or growth/differentiation factor 15 in colorectal cancer was associated with lymph node metastatic behavior. This study showed an accurate, sensitive, and robust label-free quantitation approach for differential analysis of cancer secretome. The comparison of the cancer secretome in vitro is a feasible strategy to obtain valuable biomarkers for potential clinical application. Both trefoil factor 3 and growth/differentiation factor 15 could serve as potential biomarkers for the prediction of colorectal cancer metastasis.
We have previously identified a panel of autoantibodies (AABs), including p53, GAGE7, PGP9.5, CAGE, MAGEA1, SOX2 and GBU4-5, that was helpful in the early diagnosis of lung cancer. This large-scale, multicenter study was undertaken to validate the clinical value of this 7-AABs panel for early detection of lung cancer in a Chinese population. Two independent sets of plasma samples from 2308 participants were available for the assay of AABs (training set = 300; validation set = 2008). The concentrations of AABs were quantitated by enzyme-linked immunosorbent assay (ELISA), and the optimal cutoff value for each AAB was determined in the training set and then applied in the validation set. The value of the 7-AABs panel for the early detection of lung cancer was assessed in 540 patients who presented with ground-glass nodules (GGNs) and/or solid nodules. In the validation set, the sensitivity and specificity of the 7-AABs panel were 61% and 90%, respectively. For stage I and stage II non-small cell lung cancer (NSCLC), the sensitivity of the 7-AABs panel was 62% and 59%, respectively, and for limited stage small cell lung cancer (SCLC) it was 59%; these sensitivity values were considerably higher than for traditional biomarkers (including CEA, NSE and CYFRA21-1). Importantly, the combination of the 7-AABs panel and low-dose computed tomography (CT) scanning significantly improved the diagnostic yield in patients presenting with GGNs and/or solid nodules. In conclusion, our 7-AABs panel has clinical value for early detection of lung cancer, including early-stage lung cancer presenting as GGNs.
Purpose In this study, we aimed to investigate the viability of utilizing CytoSorter® system to detect circulating tumor cells (CTCs) and to evaluate the diagnostic value of CTCs in breast cancer (BC). Methods A total of 366 females patients suspected of having BC and 30 healthy female volunteers were enrolled in this study. CTCs were enriched by CytoSorter®, a microfluidic‐based CTCs capturing platform. CTC detection was performed before operation or biopsy. Based on the biopsy results, patients were divided into two groups, namely patients with BC and patients with benign breast diseases (BBD). Patients with BBD and healthy volunteers were serving as controls. The correlation between CTC enumeration and patients' clinicopathological characteristics was evaluated. The receiver operating characteristic (ROC) curve was plotted to assess the diagnostic potency of CytoSorter® system in BC. Results Based on the biopsy results, 130 BC patients at different cancer stages and 236 patients with BBD were enrolled in the study. Seven subjects were dropped out from the study. CTCs were detected in 109 of 128 BC patients, in one of 29 healthy volunteers, and in 37 of 232 patients with BBD. Maximum CTC counts detected in BC patients, healthy volunteers, and patients with BBD were 8, 1, and 4, respectively. Statistical analysis showed CTCs could be used to distinguish BC patients from healthy volunteers and patients with BBD (P < .0001). Circulating tumor cells were statistically associated with patients' cancer stage (P = .0126), tumor size (tumor node metastasis [TNM] T stage, P = .0253), cancer type (invasive vs noninvasive, P = .0141), and lymph node metastasis (P = .0436). More CTCs were found in patients at advanced cancer stage or TNM T stage and in patients with invasive tumor or lymph node metastasis. Furthermore, CTC detection rates in BC patients at Tis and T1‐4 stages were 50%, 81.67%, 91.07%, 100%, and 100%, respectively. When the CTC cut‐off value was set to 2, the ROC curve gave an area under the curve (AUC) of 0.86 with a specificity and sensitivity of 95.4% and 76.56%, respectively. Taken together, CTCs could be used as a diagnostic aid in assistance of cancer screening and staging. Conclusion Circulating tumor cells were successfully isolated in BC patients using CytoSorter® system. CTCs can be used to differentiate BC patients from the patients with BBD or healthy volunteers, and as a diagnostic aid for early cancer diagnosis and cancer staging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.