Exosomes are nano-sized membrane vesicles released by a variety of cell types, and are thought to play important roles in intercellular communications. In breast cancer, through horizontal transfer of various bioactive molecules, such as proteins and mRNAs, exosomes are emerging as local and systemic cell-to-cell mediators of oncogenic information and play an important role on cancer progression. This review outlines the current knowledge and concepts concerning the exosomes involvement in breast cancer pathogenesis (including tumor initiation, invasion and metastasis, angiogenesis, immune system modulation and tumor microenvironment) and cancer therapy resistance. Moreover, the potential use of exosomes as promising diagnostic and therapeutic biomarkers in breast cancer are also discussed.
Purpose In this study, we aimed to investigate the viability of utilizing CytoSorter® system to detect circulating tumor cells (CTCs) and to evaluate the diagnostic value of CTCs in breast cancer (BC). Methods A total of 366 females patients suspected of having BC and 30 healthy female volunteers were enrolled in this study. CTCs were enriched by CytoSorter®, a microfluidic‐based CTCs capturing platform. CTC detection was performed before operation or biopsy. Based on the biopsy results, patients were divided into two groups, namely patients with BC and patients with benign breast diseases (BBD). Patients with BBD and healthy volunteers were serving as controls. The correlation between CTC enumeration and patients' clinicopathological characteristics was evaluated. The receiver operating characteristic (ROC) curve was plotted to assess the diagnostic potency of CytoSorter® system in BC. Results Based on the biopsy results, 130 BC patients at different cancer stages and 236 patients with BBD were enrolled in the study. Seven subjects were dropped out from the study. CTCs were detected in 109 of 128 BC patients, in one of 29 healthy volunteers, and in 37 of 232 patients with BBD. Maximum CTC counts detected in BC patients, healthy volunteers, and patients with BBD were 8, 1, and 4, respectively. Statistical analysis showed CTCs could be used to distinguish BC patients from healthy volunteers and patients with BBD (P < .0001). Circulating tumor cells were statistically associated with patients' cancer stage (P = .0126), tumor size (tumor node metastasis [TNM] T stage, P = .0253), cancer type (invasive vs noninvasive, P = .0141), and lymph node metastasis (P = .0436). More CTCs were found in patients at advanced cancer stage or TNM T stage and in patients with invasive tumor or lymph node metastasis. Furthermore, CTC detection rates in BC patients at Tis and T1‐4 stages were 50%, 81.67%, 91.07%, 100%, and 100%, respectively. When the CTC cut‐off value was set to 2, the ROC curve gave an area under the curve (AUC) of 0.86 with a specificity and sensitivity of 95.4% and 76.56%, respectively. Taken together, CTCs could be used as a diagnostic aid in assistance of cancer screening and staging. Conclusion Circulating tumor cells were successfully isolated in BC patients using CytoSorter® system. CTCs can be used to differentiate BC patients from the patients with BBD or healthy volunteers, and as a diagnostic aid for early cancer diagnosis and cancer staging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.