A method was developed to employ National Institute of Standards and Technology (NIST) 2008 retention index database information for molecular retention matching via constructing a set of empirical distribution functions (DFs) of the absolute retention index deviation to its mean value. The effects of different experimental parameters on the molecules’ retention indices were first assessed. The results show that the column class, the column type, and the data type have significant effects on the retention index values acquired on capillary columns. However, the normal alkane retention index (Inorm) with the ramp condition is similar to the linear retention index (IT), while the Inorm with the isothermal condition is similar to the Kováts retention index (I). As for the Inorm with the complex condition, these data should be treated as an additional group, because the mean Inorm value of the polar column is significantly different from the IT. Based on this analysis, nine DFs were generated from the grouped retention index data. The DF information was further implemented into a software program called iMatch. The performance of iMatch was evaluated using experimental data of a mixture of standards and metabolite extract of rat plasma with spiked-in standards. About 19% of the molecules identified by ChromaTOF were filtered out by iMatch from the identification list of electron ionization (EI) mass spectral matching, while all of the spiked-in standards were preserved. The analysis results demonstrate that using the retention index values, via constructing a set of DFs, can improve the spectral matching-based identifications by reducing a significant portion of false-positives.
Hard carbons, an important category of amorphous carbons, are non‐graphitizable and are widely accepted as the most promising anode materials for emerging sodium‐ion batteries (SIBs), because of their changeable low‐potential charge/discharge plateaus. However, their microstructures are not fixed and are difficult to accurately demonstrate as graphites do. The successful use of hard carbons in SIBs revives the interest to clearly picture their complicated microstructures that are in close relevance to sodium storage. In this review, the past definitions and structural models of hard carbons are revisited first, and a renewed understanding of their sodium storage is presented. Three critical structural features are highlighted for hard carbons, namely crystallites, defects, and nanopores, which are directly responsible for the presence of the low‐potential plateaus and their reversible extension. The impact of these structural features upon the sodium storage is then deeply discussed and sieving carbons is finally proposed as an ideal configuration of carbon anode for superhigh sodium storage. This review is expected to offer a clear picture of hard carbons, and help realize a truly rational design of high‐capacity carbon anodes, driving the industrialization of SIBs, and more promisingly open up a window for exploring their possible new uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.